Publications by authors named "Balazs Visegrady"

The 53-kDa insulin receptor substrate protein (IRSp53) organizes the actin cytoskeleton in response to stimulation of small GTPases, promoting the formation of cell protrusions such as filopodia and lamellipodia. IMD is the N-terminal 250 amino acid domain (IRSp53/MIM Homology Domain) of IRSp53 (also called I-BAR), which can bind to negatively charged lipid molecules. Overexpression of IMD induces filopodia formation in cells and purified IMD assembles finger-like protrusions in reconstituted lipid membranes.

View Article and Find Full Text PDF

Metastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation-promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices.

View Article and Find Full Text PDF

Infection of host cells by pathogenic microbes triggers signal transduction pathways leading to a multitude of host cell responses including actin cytoskeletal re-arrangements and transcriptional programs. The diarrheagenic pathogens Enteropathogenic E. coli (EPEC) and the related Enterohemorrhagic E.

View Article and Find Full Text PDF

Mutations in the gene encoding skeletal muscle alpha-actin (ACTA1) account for approx. 20% of patients with the muscular disorder nemaline myopathy. Nemaline myopathy is a muscular wasting disease similar to muscular dystrophy, but distinguished by deposits of actin and actin-associated proteins near the z-line of the sarcomere.

View Article and Find Full Text PDF

The 53-kDa insulin receptor substrate protein (IRSp53) is part of a regulatory network that organises the actin cytoskeleton in response to stimulation by small GTPases, promoting formation of actin-rich cell protrusions such as filopodia and lamellipodia. It had been established earlier that IRSp53 is tyrosine phosphorylated in response to stimulation of the insulin and insulin-related growth factor receptors, but the consequences of tyrosine phosphorylation for IRSp53 function are unknown. Here, we have used a variety of IRSp53 truncation and point mutants to identify insulin-responsive tyrosine phosphorylation sites on IRSp53.

View Article and Find Full Text PDF

The stabilisation of magnesium actin filaments by phalloidin and jasplakinolide was studied using the method of differential scanning calorimetry. The results showed that actin could adapt three conformations in the presence of drugs. One conformation was adapted in direct interaction with the drug, while another conformation was identical to that observed in the absence of drugs.

View Article and Find Full Text PDF

In this work the effect of phalloidin and jasplakinolide on the dynamic properties and thermal stability of actin filaments was studied. Temperature dependent fluorescence resonance energy transfer measurements showed that filaments of Ca-actin became more rigid in the presence of phalloidin or jasplakinolide. Differential scanning calorimetric data implied that the stiffer filaments also had greater thermal stability in the presence of phalloidin or jasplakinolide.

View Article and Find Full Text PDF

This contribution deals with comparative studies on the chiral separation of thiazide diuretics using cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD-RH), cellulose tris(4-methylbenzoate) (Chiralcel OJ-R) and teicoplanin (Chirobiotic T) phases. All columns showed good chiral recognition ability for this class of compounds. Out of seven compounds investigated, six were resolved with baseline resolution with at least one of the three columns.

View Article and Find Full Text PDF

Stereoselective recognition of chiral compounds can be used for mapping of surface interaction sites on proteins. Iron-free human serum transferrin is a suitable chiral selector in capillary electrophoresis used in native form in solution. Separation of optical isomers of tryptophan-methylester, tryptophan-ethylester and tryptophan-butylester and various drugs were studied in capillary zone electrophoresis applying a distinct transferrin zone prior to sample injection.

View Article and Find Full Text PDF