Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated as a hypothalamic peptide based on its efficacy to increase adenylate cyclase (AC) activity. It has a widespread distribution throughout the body including the nervous system and peripheral organs, where PACAP exerts protective effects both in vivo and in vitro through its anti-apoptotic, anti-inflammatory, and antioxidant functions. The aim of the present paper was to review the currently available literature regarding the effects of PACAP on cell death in vitro in neural and non-neural cells.
View Article and Find Full Text PDFPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs.
View Article and Find Full Text PDFPituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects.
View Article and Find Full Text PDFThe purpose of this study was to determine whether pituitary adenylate cyclase activating polypeptide (PACAP) could influence the neovascularization processes in hyperosmotic and oxidative stress in retinal pigment epithelial cells. Hyperosmotic conditions and oxidative stress were induced by 200 mM sucrose and 250 µM hydrogen peroxide (H O ), respectively. Morphology and elasticity of adult retinal pigment epithelial (ARPE-19) cells were measured by atomic force microscopy, while the investigation of junctional molecules, such as occludin and ZO-1, was carried out using immunofluorescence.
View Article and Find Full Text PDFPituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide.
View Article and Find Full Text PDFEarthworm's innate immunity is maintained by cellular and humoral components. Our objective was to characterize the cytotoxicity leading to target cell death caused by earthworm coelomocytes. Coelomocyte lysates induced strong cytotoxicity in tumor cell lines.
View Article and Find Full Text PDFLysenin is a species-specific bioactive molecule of Eisenia andrei earthworms. This protein is a potent antimicrobial factor; however its cellular expression and induction against pathogens are still not fully understood. We developed a novel monoclonal antibody against lysenin and applied this molecular tool to characterize its production and antimicrobial function.
View Article and Find Full Text PDFPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with well-known cytoprotective effects. We have reported earlier that PACAP decreases mortality and the degree of tubular atrophy in a rat model of renal ischemia/reperfusion injury. Recently, we have shown that kidney cultures isolated from PACAP deficient mice show increased susceptibility to renal oxidative stress.
View Article and Find Full Text PDFPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neuro- and general cytoprotective actions. PACAP is also an important modulator of circadian rhythmic functions, including time-dependent effects in the pineal gland. It is not known whether PACAP influences the survival of pinealocytes.
View Article and Find Full Text PDFOxidative stress plays an important role in various renal and hepatic pathologies, and reduction of oxidative stress-induced processes is an important protective strategy in tissues of diverse origins against harmful stimuli. Pituitary adenylate cyclase activating polypeptide (PACAP) is a well-known cytotrophic and cytoprotective peptide. PACAP promotes cell survival in numerous cells and tissues exposed to various stimuli.
View Article and Find Full Text PDFThe role of calcium signaling in activation of both innate and adaptive immunity is basically important, however, the evolutionary aspects are not clarified yet. Currently limited data are available about calcium levels of coelomocytes, cellular mediators of earthworm immunity. We aimed to observe basal and induced Ca(2+) levels of coelomocyte subgroups after various stimulations in Eisenia fetida and Allolobophora caliginosa using a Ca(2+)-sensitive dye.
View Article and Find Full Text PDF