ACS Appl Bio Mater
August 2024
Zn-containing TiO-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure.
View Article and Find Full Text PDFSmall
October 2024
For the initial instance, oxygen deficiency-enriched vanadium pentoxide (O─VO@500) thin film electrodes are tuned by the Pulsed Laser Ablation technique. The O─VO@500 thin film electrode shows remarkable electrochemical performances confirming the greater potential window of -0.4 to 0.
View Article and Find Full Text PDFAn attempt has been made to promote the efficiency of the electrochromic (EC) windows to perform at a faster switching rate with good coloration and easy recyclability. In this work, ion-assisted pulsed DC unbalanced confocal magnetron sputtering is used to fabricate mixed metal oxide thin films of Nb and Ti (which are termed as NTO) for EC applications. Further, to increase the EC efficiency of this film, a very thin metallic seed layer is incorporated between the substrate and the film using the layer-by-layer (LBL) coating strategy.
View Article and Find Full Text PDFMetal-free cost-efficient biocompatible molecules are beneficial for opto-electrochemical bioassays. Herein, chitosan (CS) conjugated butein is prepared via graft polymerization. Structural integrity between radical active sites of CS and its probable conjugation routes with reactive OH group of butein during grafting were comprehensively studied using optical absorbance/emission property, NMR, FT-IR and XPS analysis.
View Article and Find Full Text PDFThe catalytic activity of 3d-transition-metal-based electrocatalysts has exhibited considerable enhancements in electrocatalytic water splitting via pioneering modulations in the active sites. To overcome the energy loss because of the mechanic steps involved in a complex oxygen evolution reaction (OER), the electrode surface with only a few layers would be an advantage over multilayers for the ease of the electrolyte interaction and gas evolution. Here, for the first time, thin films of CoS are prepared on a carbon cloth via a pulsed laser deposition (PLD) technique via layer-by-layer deposition of Ni that tend to give Ni-CoS thin films.
View Article and Find Full Text PDFBiointerphases
January 2021
Mg-based thin film metallic glasses (TFMGs) can viably decrease stress shielding caused by mismatch of the modulus of elasticity between the implant material and human bone. Here, Mg-based TFMGs were fabricated onto implantable substrates by ion assisted pulsed DC magnetron sputtering. The microstructure assessment and the impact of the principle constituents of the coatings were determined utilizing an x-ray diffractometer, a transmission electron microscope, and x-ray photoelectron spectroscopy.
View Article and Find Full Text PDFA novel GdO nanosheet was synthesized by the template-free chemical coprecipitation method. Interestingly, upon calcination at 600 °C, nanoparticles were transformed into a nanosheet, as observed from field emission scanning electron microscopy (FESEM) images. An increase in the calcination temperature to 600 °C increases the particle size to 50 nm, which results in aggregation.
View Article and Find Full Text PDFWater oxidation in alkaline medium was efficiently catalyzed by the self-assembled molecular hybrids of CoS-DNA that had 20 times lower Co loading than the commonly used loading. The morphological outcome was directed by varying the molar ratio of metal precursor Co(Ac) and DNA and three different sets of CoS-DNA molecular hybrids, viz. CoS-DNA(0.
View Article and Find Full Text PDFCatalysts for the oxygen evolution reaction (OER) play an important role in the conversion of solar energy to fuel of earth-abundant water into H and O through splitting/electrolysis. Heterogeneous electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) exhibit catalytic activity that depends on the electronic properties, oxidation states, and local surface structure. Spinel ferrites (MFeO; M = Ni and Co) based materials have been attractive for the catalytic water oxidation due to their well-known stability in alkaline medium, easy synthesis, existence of metal cations with various oxidation states, low cost, and tunable properties by the desired metal substitution.
View Article and Find Full Text PDFThin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel.
View Article and Find Full Text PDFThe effect of legume incorporation (5%, 10% and 15%) on functional and nutritional properties of sorghum and wheat extrudates was investigated. Sorghum extrudates incorporated with legumes showed lower water absorption index water solubility index and pasting properties viz., peak viscosity, minimum viscosity, breakdown viscosity, final viscosity and total set back and similar degree of gelatinization and nutritional profile.
View Article and Find Full Text PDFTitanium/titanium nitride (Ti/TiN) nanoscale multilayered films were deposited onto 316L stainless steel substrates by reactive magnetron sputtering using a Ti target. Coatings characterized by X-ray diffraction showed that the stack possesses centered cubic structure. The X-ray photoelectron spectroscopy survey spectra on the etched surfaces of the stack film on steel exhibited the characteristic Ti2p, N1s, and O1s peaks at the corresponding binding energies 454.
View Article and Find Full Text PDF