Publications by authors named "Balasubramanian Sivasankaran"

Glioblastoma (GBM) is a highly malignant primary tumor of the central nervous system originating in glial cells. GBM results in more years of life lost than any other cancer type. Low levels of Notch receptor expression correlates with prolonged survival in various high grade gliomas independent of other markers.

View Article and Find Full Text PDF

We present a case of globosus amorphus delivered from a goat and subjected to radiography and histological examination. Radiography revealed a lack of development of any organ system; histological sections showed evidence of lymphoid aggregations, mononuclear infiltrations, blood capillaries, and dense fibroblasts.

View Article and Find Full Text PDF

Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer.

View Article and Find Full Text PDF

Loss of heterozygosity (LOH) of the entire chromosome 10 is the most frequent genetic alteration in human glioblastoma (GBM). In addition to PTEN/MMAC1 on 10q23.3, clustering of partial deletion break-points on 10q25.

View Article and Find Full Text PDF

Tenascin-C (TNC) expression is known to correlate with malignancy in glioblastoma (GBM), a highly invasive and aggressive brain tumor that shows limited response to conventional therapies. In these malignant gliomas as well as in GBM cell lines, we found Notch2 protein to be strongly expressed. In a GBM tumor tissue microarray, RBPJk protein, a Notch2 cofactor for transcription, was found to be significantly coexpressed with TNC.

View Article and Find Full Text PDF

Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability.

View Article and Find Full Text PDF

The structural complexity of chromosome 1p centromeric region has been an obstacle for fine mapping of tumor suppressor genes in this area. Loss of heterozygosity (LOH) on chromosome 1p is associated with the longer survival of oligodendroglioma (OD) patients. To test the clinical relevance of 1p loss in glioblastomas (GBM) patients and identifiy the underlying tumor suppressor locus, we constructed a somatic deletion map on chromosome 1p in 26 OG and 118 GBM.

View Article and Find Full Text PDF

The present study evaluated the effective dose of sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, for determination of the level of enhancement of histone acetylation in porcine fetal fibroblasts (PFFs) based on their morphology, growth, apoptosis and cell cycle status. Cells were analyzed for their histone acetylation levels at H3, H4 and H2A and expression of genes related to histone deacetylation (HDAC1, HDAC2 and HDAC3), pro-apoptosis (Bax and Bak) and anti-apoptosis (Bcl-2). PFFs at passage 3-4 were cultured with 0, 0.

View Article and Find Full Text PDF

In the present study, we have characterized an isolated population of porcine bone marrow mesenchymal stem cells (MSCs) for multilineage commitment and compared the developmental potential of cloned embryos with porcine MSCs and fetal fibroblasts (FFs). MSCs exhibited robust alkaline phosphatase activity and later transformed into mineralized nodules following osteoinduction. Furthermore, MSCs underwent adipogenic and chondrogenic differentiation by producing lipid droplets and proteoglycans, respectively.

View Article and Find Full Text PDF