Background & Objectives: Drug-resistant tuberculosis (TB) jeopardizes the treatment process with poor outcomes. Efflux pumps (EPs) belonging to the ABC transporter family in Mycobacterium tuberculosis confer resistance to rifampicin (RMP) besides genetic mutations thus serving as a target for a potential adjunct therapeutic inhibitory molecule. Rv1218c is one such pump that was previously reported to be active in multidrug-resistant TB clinical isolates.
View Article and Find Full Text PDFThis study involves the in-vitro and in-vivo anti-TB potency and in-vivo safety of Transitmycin (TR) (PubChem CID:90659753)- identified to be a novel secondary metabolite derived from Streptomyces sp (R2). TR was tested in-vitro against drug resistant TB clinical isolates (n = 49). 94% of DR-TB strains (n = 49) were inhibited by TR at 10μg ml-1.
View Article and Find Full Text PDFThe bacterial endophytes isolated from the halophyte Salicornia brachiata were explored for the antimicrobial potential to discover novel microbial inhibitors that combat multidrug resistance. Upon investigation, ethyl acetate extract of the endophyte Bacillus subtilis NPROOT3 displayed significant potency against Mycobacterium smegmatis MTCC6 as well as Mycobacterium tuberculosis H37Rv strain. Further investigation of ethyl acetate crude extract by repeated chromatographic separations followed by characterization using UV, HR-ESI-MS, MALDI-MS, MALDI-MS/MS, CD, and NMR spectroscopy yielded a series of five known siderophores, namely, SVK21 (1), bacillibactin C (2), bacillibactin B (3), tribenglthin A (4), and bacillibactin (5).
View Article and Find Full Text PDFThe alarming increase in multidrug resistance, which includes Bedaquiline and Delamanid, stumbles success in Tuberculosis treatment outcome. Mycobacterium tuberculosis gains resistance to rifampicin, which is one of the less toxic and potent anti-TB drugs, through genetic mutations predominantly besides efflux pump mediated drug resistance. In recent decades, scientific interventions are being carried out to overcome this hurdle using novel approaches to save this drug by combining it with other drugs/molecules or by use of high dose rifampicin.
View Article and Find Full Text PDFFNDR-20081 [4-{4-[5-(4-Isopropyl-phenyl)- [1,2,4]oxadiazol-3-ylmethyl]-piperazin-1-yl}-7-pyridin-3-yl-quinoline] is a novel, first in class anti-tubercular pre-clinical candidate against sensitive and drug-resistant Mycobacterium tuberculosis (Mtb). In-vitro combination studies of FNDR-20081 with first- and second-line drugs exhibited no antagonism, suggesting its compatibility for developing new combination-regimens. FNDR-20081, which is non-toxic with no CYP3A4 liability, demonstrated exposure-dependent killing of replicating-Mtb, as well as the non-replicating-Mtb, and efficacy in a mouse model of infection.
View Article and Find Full Text PDFThe World Health Organization (WHO) has developed specific guidelines for critical concentrations (CCs) of antibiotics used for tuberculosis (TB) treatment, which is universally followed for drug susceptibility testing (DST) of clinical specimens. However, the CC of drugs can differ significantly among the mycobacterial species based on the population, geographic location, and the prevalence of the infecting strain in a particular area. The association between CC and the minimal inhibitory concentration (MIC) of anti-TB drugs is poorly understood.
View Article and Find Full Text PDF