Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction.
View Article and Find Full Text PDFNew method has been proposed for the estimation of size and number density distribution of oscillating bubbles in a sonochemical reactor using acoustic emission spectra measurements. Bubble size distribution has been determined using Minnaert's equation [M. Minnaert, On musical air bubbles and sound of running water, Philanthr.
View Article and Find Full Text PDFAcoustic emission spectra measurements have been carried out under mono and multi-frequency acoustic sources to understand the fundamental difference in bubble/cavity dynamics. The effect of introducing the dual and triple frequency acoustic waves of different frequency on the sono-chemical yield has also been investigated experimentally. The introduction of a second wave has increased the number of cavitating bubbles and as well as the collapsing intensity of cavities resulting into higher sono-chemical yield, and better effective utilization of reactor volume with a large number of resonating cavitating bubbles.
View Article and Find Full Text PDFExperiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid.
View Article and Find Full Text PDF