Microbes like bacteria and fungi are crucial for host plant growth and development. However, environmental factors and host genotypes can influence microbiome composition and diversity in plants such as industrial hemp (Cannabis sativa L.).
View Article and Find Full Text PDFInterest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing.
View Article and Find Full Text PDFA neglected mechanism for pressure-responsive color change is demonstrated using cellulose acetate composites prepared by direct (solvent) immersion annealing (DIA), with different loadings of activated charcoal filler. Namely, compressive plastic deformation of the translucent cellulose acetate leads to a decrease in the optical path length and a concomitant increase in the visibility of the opaque contrasting filler. Composites bearing 1-7 wt% activated charcoal exhibited a linear relationship between applied pressure and resulting pressure mark brightness in the range of 12-56 MPa.
View Article and Find Full Text PDFLignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers.
View Article and Find Full Text PDFThe circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil.
View Article and Find Full Text PDFA thermophilic bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions.
View Article and Find Full Text PDFMicrobial symbionts play a significant role in plant health and stress tolerance. However, few studies exist that address rare species of core-microbiome function during abiotic stress. In the current study, we compared the microbiome composition of succulent dwarf shrub halophyte Hadidi across desert populations.
View Article and Find Full Text PDFNovel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose.
View Article and Find Full Text PDFLignin-carbohydrate complexes (LCCs) in the plant cell wall are responsible for providing resistance against biomass-degrading enzymes produced by microorganisms. Four major types of lignin-carbohydrate bonds are reported in the literature, namely, benzyl ethers, benzyl esters, phenyl glycosides, and acetyl ester linkages. Ester's linkages in the plant cell wall are labile to alkaline pretreatments, such as ammonia fiber expansion (AFEX), which uses liquid or gaseous ammonia to cleave those linkages in the plant cell wall and reduce biomass recalcitrance.
View Article and Find Full Text PDFMushrooms are high-value products that can be produced from lignocellulosic biomass. Mushrooms are the fruiting body of fungi and are domestically cultivated using lignocellulosic biomass obtained from agricultural byproducts and woody biomass. A handful of edible mushroom species are commercially cultivated at small, medium, and large scales for culinary and medicinal use.
View Article and Find Full Text PDFGlucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi.
View Article and Find Full Text PDFThe aim of this work was to study a two-step chemoenzymatic method for production of short chain chitooligosaccharides. Chitin was chemically pretreated using sulphuric acid, sodium hydroxide and two different ionic liquids, 1-Ethyl-3-methylimidazolium bromide and Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate under mild processing conditions. Pretreated chitin was further hydrolyzed employing purified chitinase from Thermomyces lanuginosus ITCC 8895.
View Article and Find Full Text PDFSolid state anaerobic digestion (SSAD) of lignocellulosic biomass may be attractive solution for its valorisation. Compared to liquid state anaerobic digestion (LSAD), SSAD can handle higher organic loading rates (OLR), requires a less water and smaller reactor volume. It may require lower energy demand for heating or mixing and has higher volumetric methane productivity.
View Article and Find Full Text PDFCoronavirus disease (COVID-19) caused by the novel coronavirus (SARS-CoV-2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure.
View Article and Find Full Text PDFLignocellulosic materials are plant-derived feedstocks, such as crop residues (e.g., corn stover, rice straw, and sugar cane bagasse) and purpose-grown energy crops (e.
View Article and Find Full Text PDFIn this study, two novel thermostable lytic polysaccharide monooxygenases (LPMOs) were cloned from thermophilic fungus Scytalidium thermophilum (PMO9D_SCYTH) and Malbranchea cinnamomea (PMO9D_MALCI) and expressed in the methylotrophic yeast Pichia pastoris X33. The purified PMO9D_SCYTH was active at 60 °C (t = 60.58 h, pH 7.
View Article and Find Full Text PDFLipids are in high demand in food production, nutritional supplements, detergents, lubricants, and biofuels. Different oil seeds produced from plants are conventionally extracted to yield lipids. With increasing population and reduced availability of cultivable land, conventional methods of producing lipids alone will not satisfy increasing demand.
View Article and Find Full Text PDFChaetomium globosporum was isolated from aeolian soil samples collected from semi-arid locations in the state of Rajasthan, India. The efficiency of fungal strain for biological treatment of biomass to improve biogas yield was screened by estimating laccase enzyme activity under submerged fermentation system. Further, lignocellulosic biomass(s) wheat and pearl millet straw were subjected to biological treatment and subsequent increase in release of reducing sugar as compared to untreated straw was determined.
View Article and Find Full Text PDFThe co-digestion of pretreated sugarcane lignocelluloses with dairy cow manure (DCM) as a bioenergy production and waste management strategy, for intensive livestock farms located in sugarcane regions, was investigated. Ammonia fiber expansion (AFEX) increased the nitrogen content and accelerated the biodegradability of sugarcane bagasse (SCB) and cane leaf matter (CLM) through the cleavage of lignin carbohydrate crosslinks, resulting in the highest specific methane yields (292-299 L CH/kg VSadded), biogas methane content (57-59% v/v) and biodegradation rates, with or without co-digestion with DCM. To obtain comparable methane yields, untreated and steam exploded (StEx) SCB and CLM had to be co-digested with DCM, at mass ratios providing initial C/N ratios in the range of 18 to 35.
View Article and Find Full Text PDFRemoving alkali-soluble lignin using extractive ammonia (EA) pretreatment of corn stover (CS) is known to improve biomass conversion efficiency during enzymatic hydrolysis. In this study, we investigated the effect of alkali-soluble lignin on six purified core glycosyl hydrolases and their enzyme synergies, adopting 31 enzyme combinations derived by a five-component simplex centroid model, during EA-CS hydrolysis. Hydrolysis experiment was carried out using EA-CS(-) (approx.
View Article and Find Full Text PDFBackground: Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time.
View Article and Find Full Text PDFBiochemical conversion of lignocellulosic biomass to liquid fuels requires pretreatment and enzymatic hydrolysis of the biomass to produce fermentable sugars. Degradation products produced during thermochemical pretreatment, however, inhibit the microbes with regard to both ethanol yield and cell growth. In this work, we used synthetic hydrolysates (SynH) to study the inhibition of yeast fermentation by water-soluble components (WSC) isolated from lignin streams obtained after extractive ammonia pretreatment (EA).
View Article and Find Full Text PDF