Publications by authors named "Balamuthu Kadalmani"

The present research aims to develop a Ca-Zn ion-incorporated surface functionalized 3D Ti cancellous bone scaffold for bone defect repair. The scaffold is designed to mimic human cancellous bone architecture through selective laser melting-based additive manufacturing. The chemical-based surface modification approach employed here created a Ca and Zn ions incorporated nano-porous surface layer with enhanced surface roughness and hydrophilicity.

View Article and Find Full Text PDF

Atrazine (ATZ, CHClN) is a widely used synthetic herbicide that contaminates drinking water. It is a known endocrine disruptor that disrupts various molecular pathways involved in hormone signaling, and DNA damage, and can cause reproductive disorders, including decreased fertility, and abnormal development of reproductive organs, as revealed in animal model studies. However, the effect of ATZ on steroidogenesis in the male reproductive system, especially reduction of ketosteroids to hydroxysteroids, remains unclear.

View Article and Find Full Text PDF

Lauric acid (LA) induces apoptosis in cancer and promotes the proliferation of normal cells by maintaining cellular redox homeostasis. Earlier, we postulated LA-mediated regulation of the NF-κB pathway by an epigenetic mechanism. However, the molecular mechanism and possible epigenetic events remained enigmatic.

View Article and Find Full Text PDF

Endometriosis is known to be a gynaecological condition characterised by persistent inflammation and abnormal development of endometrial stroma and glands. Researchers require a rodent model to analyse the disease environment. Animal models are the best option for investigating the etiology and effective treatment of debilitating illnesses in women since rodents, like humans, menstruate.

View Article and Find Full Text PDF

It has been reported that coconut oil supplementation can reduce neuroinflammation. However, coconut oils are available as virgin coconut oil (VCO), crude coconut oil (ECO), and refined coconut oil (RCO). The impact of coconut oil extraction process (and its major fatty acid component lauric acid) at cellular antioxidant level, redox homeostasis and inflammation in neural cells is hitherto unexplained.

View Article and Find Full Text PDF

Background: In extensive deep dermal burn injuries, split-thickness skin graft (STSG) has been the most preferred treatment option for resurfacing burn wounds. A thick split-thickness skin graft is ideal for preventing graft contracture but is associated with delayed donor healing and the lack of adequate donor skin. When applied with STSG, the dermal substitutes offer better-reconstructed skin than STSG alone.

View Article and Find Full Text PDF

Background: Botulinum toxin (BoNT) is a widely used therapeutic agent that blocks the excessive release of acetylcholine at the neuromuscular junction. Previously, repeated intracremasteric injections and slight overdose of BoNT have been reported to induce adverse effects in the testicular parameter of experimental rodents. However, a mild dose of BoNT is highly beneficial against skin ageing, neuromuscular deficits, overactive urinary bladder problems, testicular pain and erectile dysfunctions.

View Article and Find Full Text PDF

Increasing cancer drug chemo-resistance, especially in the treatment of breast and lung cancers, alarms the immediate need of newer and effective anticancer drugs. Until now, chemotherapeutics based on metal complexes are considered the most effective treatment modality. In the present study, we have evaluated the cytotoxic effect of two cobalt (III) Schiff base complexes based on the leads from complex combinatorial chemistry.

View Article and Find Full Text PDF

Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM.

View Article and Find Full Text PDF

Cobalt (III) Schiff base complexes are of attraction in the context of their potential application in cancer therapy. The aim of this study has been to find the mechanism of action of cobalt (III) Schiff base complexes 1 and 2, the synthesis and characterization of which have already been reported, in inhibiting growth of human breast cancer cell MCF-7 and lung cancer cell A549. The already proclaimed anti-proliferative effect of the cobalt complexes was ascertained using MTT cytotoxicity assay.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Quite a few plants are in use to treat female infertility and associated problems. Availing the cues from traditional knowledge, phytochemical studies and ethnopharmacological evidences, the aphrodisiac plant Ficus religiosa (F. religiosa) is widely in use to cure infertility in women.

View Article and Find Full Text PDF

Earlier, we had reported the synthesis and characterization of star-shaped poly(d,l-lactide)--gelatin (ss-pLG) to improve cell adhesion and proliferation, but the stability of ss-pLG scaffolds remained a persistent issue. Here we show an increase in the stability of ss-pLG using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a covalent cross-linker (h-ss-pLG). The rate of cell proliferation within Hep-G2 cultured h-ss-pLG scaffolds increased until the third day, and afterward it drastically declined.

View Article and Find Full Text PDF

The hippocampus-derived neuroestradiol plays a major role in neuroplasticity, independent of circulating estradiol that originates from gonads. The response of hypothalamus-pituitary regions towards the synthesis of neuroestradiol in the hippocampus is an emerging scientific concept in cognitive neuroscience. Hippocampal plasticity has been proposed to be regulated via neuroblasts, a major cellular determinant of functional neurogenesis in the adult brain.

View Article and Find Full Text PDF

Tributyltins (TBT) are ubiquitous and persistent environmental contaminants that disturb normal endocrine function including gonadal function in humans and marine organisms. TBT was administered through oral route to male Syrian hamsters at daily doses of 50, 100, and 150 ppm/kg for 65 days. Changes in testis morphology, immunohistochemistry of iNOS, 3β-HSD, and 17β-HSD, cholesterol transport receptor, nuclear receptors, and transcription factors were analyzed.

View Article and Find Full Text PDF

Verrucarin A (VA), an active constituent of pathogenic fungus Myrothecium verrucaria, which has the ability to inhibit the growth of breast cancer cells. However, the mechanism by which VA exerts its inhibitory potential remains elusive. Here, we demonstrated that VA inhibited the growth of MCF-7 breast cancer cells, increased the levels of reactive oxygen species (ROS), and subsequently induced mitochondrial membrane potential (Δψm) loss, leading to the increase of Bax/Bcl-2 ratio, cytochrome c release, caspase activation, PARP degradation, and apoptosis.

View Article and Find Full Text PDF

The present study was carried out to elucidate the mechanisms underlying Verrucarin A (VA)-induced cytotoxicity in human breast cancer cell line MDA-MB-231. VA inhibited the growth of MDA-MB-231 cells by induction of reactive oxygen species (ROS)-dependent mitochondrial apoptosis. Elevation of ROS production, associated with changes in Bax/Bcl-2 ratio, led to loss of mitochondrial membrane potential (Δψm) and cytochrome c release in VA-treated cells.

View Article and Find Full Text PDF

Verrucarin A (VA), a protein synthesis inhibitor, derived from the pathogen fungus Myrothecium verrucaria, inhibits growth of leukemia cell lines and activates caspases and apoptosis and inflammatory signaling in macrophages. We have investigated VA-induced growth inhibition in breast cancer cells MDA-MB-231 and T47D and, particularly, the mechanism of VA-induced apoptosis. VA treatment brought about apoptotic cell death in a dose- and time-dependent manner which was associated with chromatin condensation, cell shrinkage, nuclear fragmentation and intracellular ROS production.

View Article and Find Full Text PDF

Progenitor stem cells have been identified, isolated and characterized in numerous tissues and organs. However, their therapeutic potential and the use of these stem cells remain elusive except for a few progenitor cells from bone marrow, umbilical cord blood, eyes and dental pulp. The use of bone marrow-derived hematopoietic stem cells (HSC) or mesenchymal stem cells (MSCs) is restricted due to their extreme invasive procedures, low differentiation potential with age and rejection.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) hold promise for cell-based therapy in regenerative medicine. To date, MSCs have been obtained from conventional bone marrow via a highly invasive procedure. Therefore, MSCs are now also isolated from sources such as adipose tissue, cord blood and cord stroma, a subject of growing interest.

View Article and Find Full Text PDF

Background: Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs) possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive.

View Article and Find Full Text PDF

Caecilians are a unique group of limbless burrowing amphibians with discontinuous distribution. Several caecilian species are viviparous, and all practice internal fertilization. In amniotic vertebrates the sperm undergo post-testicular physiological maturation when they are initiated into motility under the influence of an epididymal secretion.

View Article and Find Full Text PDF

Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation.

View Article and Find Full Text PDF