Publications by authors named "Balamurugan Thirumalraj"

Antibiotics are essential medications for human and animal health, as they are used to battle urinary infections and bacterial diseases. Therefore, the rapid determination of antibiotic drugs in biological samples is necessary to address the current clinical challenge. Here, we developed a heterojunction ternary composite of BiOCl/BiVO nanosheets enriched with graphene oxide (BiOCl/BiVO@GO) for accurate and minimal-level detection of an antihistamine (promethazine hydrochloride, PMZ) in urine samples.

View Article and Find Full Text PDF

In this study, we developed a portable electrochemical sensor for realizing the pesticide residue in biological, environmental, and vegetable samples. A lower concentration of carbendazim pesticide (CBZ) was electrochemically exposed by newly developed gadolinium oxide/functionalized carbon nanosphere modified glassy carbon electrode (GdO/f-CNS/GCE). The GdO/f-CNS composite was prepared by two-pot ultrasonic-assisted co-precipitation method and characterized by various physicochemical analytical techniques.

View Article and Find Full Text PDF

A novel design and synthesis methodology is the most important consideration in the development of a superior electrocatalyst for improving the kinetics of oxygen electrode reactions, such as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in Li-O battery application. Herein, we demonstrate a glycine-assisted hydrothermal and probe sonication method for the synthesis of a mesoporous spherical LaCeFeMnO perovskite particle and embedded graphene nanosheet (LCFM(8255)-gly/GNS) composite and evaluate its bifunctional ORR/OER kinetics in Li-O battery application. The physicochemical characterization confirms that the as-formed LCFM(8255)-gly perovskite catalyst has a highly crystalline structure and mesoporous morphology with a large specific surface area.

View Article and Find Full Text PDF

Anode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation.

View Article and Find Full Text PDF

Herein, we report hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowire (Ag NWs) cores as efficient, low-cost, and durable oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional electrocatalysts for metal-air batteries. The hierarchical 3D architectured Ag NW@NiMn-LDH catalysts exhibit superb OER/ORR activities in alkaline conditions. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to increasing both site activity and site populations.

View Article and Find Full Text PDF

Understanding the mechanism of Li nucleation and growth is essential for providing long cycle life and safe lithium ion batteries or lithium metal batteries. However, no quantitative report on Li metal deposition is available, to the best of our knowledge. We propose a model for quantitatively understanding the Li nucleation and growth mechanism associated with the solid-electrolyte interphase (SEI) formation, which we name the Li-SEI model.

View Article and Find Full Text PDF

The combined effect of concentrated electrolyte and cycling protocol on the cyclic performance of the anode-free battery (AFB) is evaluated systematically. In situ deposition of Li in the AFB configuration in the presence of a concentrated electrolyte containing fluorine-donating salt and resting the deposit enables the formation of stable and uniform SEI. The SEI intercepts the undesirable side reaction between the deposit and solvent in the electrolyte and reduces electrolyte and Li consumption during cycling.

View Article and Find Full Text PDF

Currently, concentrated electrolyte solutions are attracting special attention because of their unique characteristics such as unusually improved oxidative stability on both the cathode and anode sides, the absence of free solvent, the presence of more anion content, and the improved availability of Li ions. Most of the concentrated electrolytes reported are lithium bis(fluorosulfonyl)imide (LiFSI) salt with ether-based solvents because of the high solubility of salts in ether-based solvents. However, their poor anti-oxidation capability hindered their application especially with high potential cathode materials (>4.

View Article and Find Full Text PDF

Heterostructured nanomaterials can paid more significant attention in environmental safety for the detection and degradation/removal of hazardous toxic chemicals over a decay. Here, we report the preparation of hierarchically nanostructured shuriken like bismuth vanadate (BiVO) as a bifunctional catalyst for photocatalytic degradation and electrochemical detection of highly toxic hexavalent chromium (Cr(VI)) using the green deep eutectic solvent reline, which allows morphology control in one of the less energy-intensive routes. The SEM results showed a good dispersion of BiVO catalyst and the HR-TEM revealed an average particle size of ca.

View Article and Find Full Text PDF

Nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles (Ni/N-MWCNT) were prepared by a thermal reduction process starting from urea and Ni(II) salt in an inert atmosphere. The nanocomposite was deposited on a screen printed electrode and characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and thermogravimetric analyses. The performance of the composite was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry.

View Article and Find Full Text PDF

A highly sensitive and selective fluorogenic sensing of L-Cysteine (L-Cys) was implemented based on gelatin stabilized gold nanoparticles decorated reduced graphene oxide (rGO/Au) nanohybrid. The rGO/Au nanohybrid was prepared by the one-pot hydrothermal method and well characterized by different physiochemical techniques. The nanohybrid exhibits a weak fluorescence of rGO due to the energy transfer from the rGO to Au NPs.

View Article and Find Full Text PDF

In this work, we describe a simple approach for the preparation of cobalt sulfide/reduced graphene oxide (CoS/RGO) nanohybrids via single step electrochemical method. The electrocatalytic activity of the CoS/RGO nanohybrids was evaluated towards the detection hydrogen peroxide (HO). The physiochemical properties of the prepared composite was characterized by means of field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray powder diffraction patterns.

View Article and Find Full Text PDF

The syntheses of highly stable ruthenium nanoparticles supported on tungsten oxides (Ru-WO) bifunctional nanocomposites by means of a facial microwave-assisted route are reported. The physicochemical properties of these Ru-WO catalysts with varied Ru contents were characterized by a variety of analytical and spectroscopic methods such as XRD, SEM/TEM, EDX, XPS, N physisorption, TGA, UV-vis, and FT-IR. The Ru-WO nanocomposite catalysts so prepared were utilized for electrocatalytic of hydrazine (NH) and catalytic oxidation of diphenyl sulfide (DPS).

View Article and Find Full Text PDF

Highly stable palladium nanoparticles (Pd NPs) supported on a porous carbon aerogel (Pd/CA) prepared by a facile microwave reduction route is reported. The as-prepared Pd/CA composites were characterized by various techniques, viz. XRD, Raman, SEM-EDX, FE-TEM, BET, and TGA.

View Article and Find Full Text PDF

The toxicity and environmental pollution by nitro aromatic compounds in water samples is the most recognized problem in worldwide. Hence, we have developed a simple and highly sensitive electrochemical method for the determination of 4-nitrophenol (4-NP) in water samples based on a chitosan (CHT) crafted zinc oxide nanoneedles (ZnO NDs) modified screen printed carbon electrode. The CHT/ZnO NDs were characterized by Field emission scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffraction technique.

View Article and Find Full Text PDF

To date, the natural alkaloids are mostly used in the field of pharmacological applications and the active substance of palmatine was extensively used in cancer therapy and other biomedical applications. Hence, in this study we report a simple preparation of poly-l-lysine (PLL) electro-polymerized on the surface of functionalized multiwalled carbon nanotubes (f-MWCNT) for electrochemical detection of palmatine content in human serum and urine samples. The active amino group of PLL plays a vital role towards the oxidation palmatine and exhibits superior electrocatalytic activity.

View Article and Find Full Text PDF

We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA).

View Article and Find Full Text PDF

In this study, we demonstrate a simple preparation of graphite (GR) sheets assisted with gelatin (GLN) polypeptide composite was developed for sensitive detection of dopamine (DA) sensor. The GR/GLN composite was prepared by GR powder in GLN solution (5mg/mL) via sonication process. The prepared GR/GLN composite displays well dispersion ability in biopolymer matrix and characterized via scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) studies.

View Article and Find Full Text PDF

A highly active and stable composite of hemin (HN) supported by reduced graphene oxide/gold nanoparticles (HN-RGO/AuNPs) was prepared by one-pot hydrothermal method. The physicochemical properties of the as-prepared composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis spectroscopy, Raman spectroscopy and X-ray diffraction technique (XRD). The HN-RGO/AuNP-modified electrode shows a stable and well-defined, surface-confined redox couple at an apparent formal potential of -0.

View Article and Find Full Text PDF

To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry.

View Article and Find Full Text PDF

We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA.

View Article and Find Full Text PDF

An amperometric determination of nitrite in different water samples was evaluated using palladium nanoparticles (PdNPs) decorated functionalized multiwalled carbon nanotubes (f-MWCNT) modified glassy carbon electrode. The f-MWCNT/PdNPs composite modified electrode was prepared by electrodeposition of PdNPs on the surface of f-MWCNT modified electrode. The parameters such as effect of number of cycles of PdNPs deposition, drop coated amount of f-MWCNT and effect of pH were optimized and discussed in detail.

View Article and Find Full Text PDF

In this work, we report a selective electrochemical sensing of nitrobenzene (NB) using an alumina (γ-Al2O3) polished glassy carbon electrode (GCE) for the first time. The scanning electron microscopy studies confirm the presence of alumina particles on the GCE surface. X-ray photoelectron spectroscopy studies reveal that the utilized alumina is γ-Al2O3.

View Article and Find Full Text PDF

In this paper, we report a highly sensitive amperometric H2O2 sensor based on silver nanowires (AgNWs) modified screen printed carbon electrode. The AgNWs were synthesized using polyol method. The synthesized AgNWs were characterized by scanning electron microscopy, UV-vis spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: