J Phys Condens Matter
November 2024
A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics.
View Article and Find Full Text PDFMagnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices.
View Article and Find Full Text PDFCobalt(ii) ions were adsorbed to the surface of rod-shape anatase TiO nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO was obtained and characterized with powder X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected.
View Article and Find Full Text PDFMagnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order.
View Article and Find Full Text PDFThe structural and magnetic properties of CoGe nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures.
View Article and Find Full Text PDFThe search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies.
View Article and Find Full Text PDFIn this work, we investigated the magnetic and structural properties of isolated Mn₅Ge₃ nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.
View Article and Find Full Text PDFBulk magnetic materials with the noncentrosymmetric cubic B20 structure are fascinating due to skyrmion spin structures associated with Dzyaloshinskii-Moriya interactions, but the size of skyrmions are generally larger than 50 nm. The control of such spin structures in the 10 nm size ranges is essential to explore them for spintronics, ultra-high-density magnetic recording, and other applications. In this study, we have fabricated MnSi nanoparticles with average sizes of 9.
View Article and Find Full Text PDFMn-based silicides are fascinating due to their exotic spin textures and unique crystal structures, but the low magnetic ordering temperatures and/or small magnetic moments of bulk alloys are major impediments to their use in practical applications. In sharp contrast to bulk Mn5Si3, which is paramagnetic at room temperature and exhibits low-temperature antiferromagnetic ordering, we show ferromagnetic ordering in Mn5Si3 nanoparticles with a high Curie temperature (Tc ≈ 590 K). The Mn5Si3 nanoparticles have an average size of 8.
View Article and Find Full Text PDFNanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets--found in hybrid cars, wind turbines, and disk drives--are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications.
View Article and Find Full Text PDFExploiting the functionalization chemistry of graphene, long-range electrostatic and short-range covalent interactions were harnessed to produce multifunctional energetic materials through hierarchical self-assembly of nanoscale oxidizer and fuel into highly reactive macrostructures. Specifically, we report a methodology for directing the self-assembly of Al and Bi2O3 nanoparticles on functionalized graphene sheets (FGS) leading to the formation of nanocomposite structures in a colloidal suspension phase that ultimately condense into ultradense macrostructures. The mechanisms driving self-assembly were studied using a host of characterization techniques including zeta potential measurements, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), particle size analysis, micro-Raman spectroscopy, and electron microscopy.
View Article and Find Full Text PDFNovel nanostructured Zr2 Co11 -based magnetic materials are fabricated in a single step process using cluster-deposition method. The composition, atomic ordering, and spin structure are precisely controlled to achieve a substantial magnetic remanence and coercivity, as well as the highest energy product for non-rare-earth and Pt-free permanent-magnet alloys.
View Article and Find Full Text PDFThe embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO(2) nanoparticles having an average particle size of 14.
View Article and Find Full Text PDFRare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 °C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.
View Article and Find Full Text PDFCore-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials.
View Article and Find Full Text PDF