The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. Herein, we fabricated a series of metal oxide composite nanostructures, including ZnO nanowires, NiO nanosheets, ZnO/CuO nanowire arrays, ZnO/FeO nanocrystals, ZnO/NiO nanosheets and ZnO/PbO nanotubes, via a simple and cost-effective chemical bath deposition (CBD) method. The electrochemical properties of the produced SCs were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFRecently, reagent-based electrode materials (urea, ammonium fluoride, hexamethylenetetramine, l-cysteine, acetic acid, and triethylamine) have received great attention in numerous applications (e.g., solar cells, fuels cells, and battery-type hybrid supercapacitors (BHSCs)).
View Article and Find Full Text PDFHerein, we report a simple and cost-effective route for the fabrication of NiWO4, NiWO4P, and NiWO4Se nanostructures using the chemical bath deposition method. As a binder-free electrode material for pseudo capacitors (PCs), the fabricated nickel foam-supported NiWO4Se exhibited an excellent cycling life of 3000 cycles with a high specific capacitance of 1115.05 F g-1 at 20 mA cm-2.
View Article and Find Full Text PDF