Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest.
View Article and Find Full Text PDFDespite the undeniable progress in visual recognition tasks fueled by deep neural networks, there exists recent evidence showing that these models are poorly calibrated, resulting in over-confident predictions. The standard practices of minimizing the cross-entropy loss during training promote the predicted softmax probabilities to match the one-hot label assignments. Nevertheless, this yields a pre-softmax activation of the correct class that is significantly larger than the remaining activations, which exacerbates the miscalibration problem.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Preterm babies in the Neonatal Intensive Care Unit (NICU) have to undergo continuous monitoring of their cardiac health. Conventional monitoring approaches are contact-based, making the neonates prone to various nosocomial infections. Video-based monitoring approaches have opened up potential avenues for contactless measurement.
View Article and Find Full Text PDFDeep learning networks have shown promising results in fast magnetic resonance imaging (MRI) reconstruction. In our work, we develop deep networks to further improve the quantitative and the perceptual quality of reconstruction. To begin with, we propose reconsynergynet (RSN), a network that combines the complementary benefits of independently operating on both the image and the Fourier domain.
View Article and Find Full Text PDFHigh spatial resolution of Magnetic Resonance images (MRI) provide rich structural details to facilitate accurate diagnosis and quantitative image analysis. However the long acquisition time of MRI leads to patient discomfort and possible motion artifacts in the reconstructed image. Single Image Super-Resolution (SISR) using Convolutional Neural networks (CNN) is an emerging trend in biomedical imaging especially Magnetic Resonance (MR) image analysis for image post processing.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Automatic detection of R-peaks in an Electrocardiogram signal is crucial in a multitude of applications including Heart Rate Variability (HRV) analysis and Cardio Vascular Disease(CVD) diagnosis. Although there have been numerous approaches that have successfully addressed the problem, there has been a notable dip in the performance of these existing detectors on ECG episodes that contain noise and HRV Irregulates. On the other hand, Deep Learning(DL) based methods have shown to be adept at modelling data that contain noise.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by examination of the Electrocardiogram (ECG) by a cardiologist.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Image segmentation is a primary task in many medical applications. Recently, many deep networks derived from U-Net has been extensively used in various medical image segmentation tasks. However, in most of the cases, networks similar to U-net produce coarse and non-smooth segmentations with lots of discontinuities.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Respiratory ailments afflict a wide range of people and manifests itself through conditions like asthma and sleep apnea. Continuous monitoring of chronic respiratory ailments is seldom used outside the intensive care ward due to the large size and cost of the monitoring system. While Electrocardiogram (ECG) based respiration extraction is a validated approach, its adoption is limited by access to a suitable continuous ECG monitor.
View Article and Find Full Text PDFGlaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio.
View Article and Find Full Text PDF