Publications by authors named "Balamurali Kannan"

Micrometer-sized functional nucleic acid (FNA) superstructures (denoted as 3D DNA) were examined as a unique class of biorecognition elements to produce highly functional bioactive paper surfaces. 3D DNA containing repeating sequences of either a DNA aptamer or DNAzyme was created from long-chain products of rolling circle amplification followed by salt aging. The resulting 3D DNA retained its original spherical shape upon inkjet printing and adhered strongly to the paper surface via physisorption.

View Article and Find Full Text PDF

We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E.

View Article and Find Full Text PDF

Foodborne pathogens are a burden to the economy and a constant threat to public health. The ability to rapidly detect the presence of foodborne pathogens is a vital component of any strategy towards establishing a safe and secure food supply chain. Bacteriophages (phages) are viruses capable of infecting and replicating within bacteria in a strain-specific manner.

View Article and Find Full Text PDF

We describe a versatile and simple method to perform sequential reactions on paper analytical devices by stacking dry pullulan films on paper, where each film contains one or more reagents or acts as a delay layer. Exposing the films to an aqueous solution of the analyte leads to sequential dissolution of the films in a temporally controlled manner followed by diffusive mixing of the reagents, so that sequential reactions can be performed. The films can be easily arranged for lateral flow assays or for spot tests (reactions take place sequentially in the z-direction).

View Article and Find Full Text PDF

Many biodetection systems employ labile enzymes and substrates that need special care, making it hard to routinely use them for point-of-care or field applications. In this work we provide a simple solution to this challenging problem through the creation of all-inclusive pullulan assay tablets. The proposed tablet system not only enhances the long-term stability of both enzymes and organic substrates, but also simplifies the assay procedure.

View Article and Find Full Text PDF

We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device.

View Article and Find Full Text PDF

The utility of hydrophobic wax barriers in paper-based lateral flow and multiwell devices for containment of aqueous solvents was extended to organic solvents and challenging aqueous surfactant solutions by preparation of a three layer barrier, consisting of internal pullulan impregnated paper barriers surrounded by external wax barriers. When paper impregnated with pullulan solution dries, the polymer forms solvent blocking lenses in the paper structure. Lens formation was illustrated by forming pullulan lenses in glass capillaries.

View Article and Find Full Text PDF

In this study, a paper-based point-of-care (POC) colorimetric biosensor was developed for the detection of lactate dehydrogenase in serum using a nonporous, oxygen impermeable reversibly gelling polysaccharide material based on pullulan. The pullulan could be printed onto paper surfaces along with all required assay reagents, providing a means for high-stability immobilization of all reagents on paper. Serum containing lactate dehydrogenase (LDH) was directly spotted on to the pullulan-coated bioactive paper and provided quantitative colorimetric data that was comparable to that obtained with a conventional plate-reader method.

View Article and Find Full Text PDF

Continuous multi-component gradients in amine and phenyl groups were fabricated using controlled rate infusion (CRI). Solutions prepared from either 3-aminopropyltriethoxysilane (APTEOS) or phenyltrimethoxysilane (PTMOS) were infused, in a sequential fashion, at a controlled rate into an empty graduated cylinder housing a vertically aligned thin layer chromatography (TLC) plate. The hydrolyzed precursors reacted with an abundance of silanol (SiOH) groups on the TLC plates, covalently attaching the functionalized silane to its surface.

View Article and Find Full Text PDF

Centimeter-long surface gradients in bi- and tridentate chelating agents have been formed via controlled rate infusion, and the coordination of Cu(2+) and Zn(2+) to these surfaces has been examined as a function of distance by X-ray photoelectron spectroscopy (XPS). 3-(Trimethoxysilylpropyl)ethylenediamine and 3-(trimethoxysilylpropyl)diethylenetriamine were used as precursor silanes to form the chelation gradients. When the gradients were exposed to a metal ion solution, a series of coordination complexes formed along the length of the substrate.

View Article and Find Full Text PDF

A simple and inexpensive method is reported for the long-term stabilization of enzymes and other unstable reagents in premeasured quantities in water-soluble tablets (cast, not compressed) made with pullulan, a nonionic polysaccharide that forms an oxygen impermeable solid upon drying. The pullulan tablets dissolve in aqueous solutions in seconds, thereby facilitating the easy execution of bioassays at remote sites with no need for special reagent handling and liquid pipetting. This approach is modular in nature, thus allowing the creation of individual tablets for enzymes and their substrates.

View Article and Find Full Text PDF

Surface charge gradients have been formed on the inside surface of 75 μm i.d. silica capillaries via controlled rate infusion using 3-aminopropyltriethoxysilane as the reactive precursor.

View Article and Find Full Text PDF

The reactivity of a series of substituted aminoalkoxysilanes for surface amine gradient formation has been studied using a newly developed time-based exposure method termed controlled-rate infusion (CRI). The aminoalkoxysilanes used include those that contain primary, secondary, and tertiary monoamines as well as more than one amine group (diamine and triamine). X-ray photoelectron spectroscopy (XPS) was used to confirm the presence of a gradient in each case and to acquire detailed information on gradient composition from which kinetic data were obtained.

View Article and Find Full Text PDF

A simple, elegant method for the formation of a continuous stationary phase gradient for use in chromatographic separations is described. Its applicability to separation science is demonstrated using thin-layer chromatography as a test case. Gradient stationary phases were formed on activated High Performance Thin-Layer Chromatography (HP-TLC) plates using a newly developed methodology termed "controlled rate infusion".

View Article and Find Full Text PDF

Surface amine gradients that exhibit a wide variety of profiles, including those that incorporate spatially distinct regions having steep and gradual variations in chemical functionality, have been prepared by the sol-gel process using a controlled-rate infusion method. In this work, a substrate that incorporates dimethyl and Si-OH groups is temporally modified with an aminoalkoxysilane (NH(2)(CH(2))(3)Si(OC(2)H(5))(3)) to build a gradient film for which the amine content changes over a 10-20 mm distance. Both X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirm the presence of a chemical gradient across the surface of the film.

View Article and Find Full Text PDF