IEEE Trans Ultrason Ferroelectr Freq Control
July 2023
An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2018
Application of the finite-element method (FEM) for the simulation of surface acoustic wave (SAW) devices has been constrained by the large number of degrees of freedom required, resulting in large memory usage and long computation times. We propose a new 2-D algorithm that takes advantage of the periodic structure typical of SAW devices. The device is partitioned into small, repeatedly occurring building blocks.
View Article and Find Full Text PDF