Publications by authors named "Balalaeva I"

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Since its discovery more than 100 years ago, photodynamic therapy (PDT) has become a potent strategy for the treatment of many types of cancer [...

View Article and Find Full Text PDF

In this report, we developed novel chlorin/arylaminoquinazoline conjugates for targeted photodynamic therapy of cancer. The synthesized photosensitizers consisted of chlorin- metallocomplexes (Zn, In, or Pd) conjugated with arylaminoquinazoline ligands with high affinity for epidermal growth factor receptors (EGFR). Additionally, the selectivity and antitumor properties of the conjugates were investigated in the EGFR-expressing A431 human tumor cell line .

View Article and Find Full Text PDF

Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes.

View Article and Find Full Text PDF
Article Synopsis
  • The concept of immunogenic cell death (ICD) is crucial for developing new anti-cancer immunotherapies, as it helps eliminate cancer cells and sparks long-lasting immune responses to prevent recurrence.
  • Photodynamic therapy (PDT) triggers ICD by using a light-sensitive dye that, when activated by light, produces reactive oxygen species that kill cancer cells and induce ICD.
  • The article provides detailed protocols for optimizing PDT, assessing ICD in vitro, and evaluating it in various tumor mouse models, ultimately aiming to enhance the effectiveness of cancer immunotherapies.
View Article and Find Full Text PDF

In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a β-glucuronidase-responsive linker. Upon activation by β-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells.

View Article and Find Full Text PDF

Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process.

View Article and Find Full Text PDF

Photodynamic therapy is known as an effective primary and adjuvant anticancer treatment. Compounds with improved properties or additional modalities are still needed to create an 'ideal' photosensitizer. In this article, we review cyanoarylporphyrazine dyes for photodynamic (anticancer) therapy that we have synthesised to date.

View Article and Find Full Text PDF

Research in the past decade on immunogenic cell death (ICD) has shown that the immunogenicity of dying tumor cells is crucial for effective anticancer therapy. ICD induction leads to the emission of specific damage-associated molecular patterns (DAMPs), which act as danger signals and as adjuvants to activate specific anti-tumor immune responses, leading to the elimination of tumor cells and the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT).

View Article and Find Full Text PDF

Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ.

View Article and Find Full Text PDF

Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3-5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.

View Article and Find Full Text PDF

Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication.

View Article and Find Full Text PDF

Development of combined schemes for the treatment of oncological diseases is a promising strategy to improve the effectiveness of antitumor therapy. This paper shows the fundamental possibility of multiplying the antitumor effect by combining targeted and photodynamic therapy. It was demonstrated that sequential treatment of HER-2 positive breast cancer cells with the targeted toxin DARPin-LoPE and the photoactive compound photodithazine leads to a synergistic enhancement of their effect.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment.

View Article and Find Full Text PDF

The use of 3D in vitro tumor models has become a common trend in cancer biology studies as well as drug screening and preclinical testing of drug candidates. The transition from 2D to 3D matrix-based cell cultures requires modification of methods for assessing tumor growth. We propose the method for assessing the growth of tumor cells in a collagen hydrogel using macro-scale registration and quantification of the gel epi-fluorescence.

View Article and Find Full Text PDF

Glioma is the most common brain tumor, for which no significant improvement in life expectancy and quality of life is yet possible. The creation of stable fluorescent glioma cell lines is a promising tool for in-depth studies of the molecular mechanisms of glioma initialization and pathogenesis, as well as for the development of new anti-cancer strategies. Herein, a new fluorescent glioma GL261-kat cell line stably expressing a far-red fluorescent protein (TurboFP635; Katushka) was generated and characterized, and then validated in a mouse orthotopic glioma model.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis.

View Article and Find Full Text PDF

Despite the significant relevance of photodynamic therapy (PDT) as an efficient strategy for primary and adjuvant anticancer treatment, several challenges compromise its efficiency. In order to develop an "ideal photosensitizer" and the requirements applied to photosensitizers for PDT, there is still a need for new photodynamic agents with improved photophysical and photobiological properties. In this study, we performed a detailed characterization of two tetracyanotetra(aryl)porphyrazine dyes with 4-biphenyl () and 4-diethylaminophenyl () groups in the periphery of the porphyrazine macrocycle.

View Article and Find Full Text PDF

Plants have developed complex systems of perception and signaling to adapt to changing environmental conditions. Electrical signaling is one of the most promising candidates for the regulatory mechanisms of the systemic functional response under the local action of various stimuli. Long-distance electrical signals of plants, such as action potential (AP), variation potential (VP), and systemic potential (SP), show specificities to types of inducing stimuli.

View Article and Find Full Text PDF

The prospective strategy for treatment of cancer is based on the application of nano-sized macromolecular carriers, which are able penetrate inside and can be accumulated within tumor tissue. In this work graft copolymers of cellulose and poly(methacrylic acid) has been prepared and tested as a nanocontainers for the delivery of drug to tumor. For this purpose, two derivatives of porphyrazine suitable for photodynamic cancer therapy were loaded into prepared polymer brush.

View Article and Find Full Text PDF

Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is based on the production of the cytotoxic reactive oxygen species (ROS) by light irradiation of a photosensitizer dye in the presence of molecular oxygen. Along with photochemical ROS production, it becomes evident that PDT induces massive secondary production of ROS which is registered long after the irradiation is completed. We created cell lines of human epidermoid carcinoma with the cytoplasmic and mitochondrial localization of protein sensor HyPer sensitive to hydrogen peroxide to compare its concentration in two cellular compartments.

View Article and Find Full Text PDF

In the natural fluidic environment of a biological system, nanoparticles swiftly adsorb plasma proteins on their surface forming a "protein corona", which profoundly and often adversely affects their residence in the systemic circulation in vivo and their interaction with cells in vitro. It has been recognized that preformation of a protein corona under controlled conditions ameliorates the protein corona effects, including colloidal stability in serum solutions. We report on the investigation of the stabilizing effects of a denatured bovine serum albumin (dBSA) protein corona formed on the surface of upconversion nanoparticles (UCNPs).

View Article and Find Full Text PDF

The immunogenicity of dying cancer cells determines the efficacy of anti-cancer therapy. Photodynamic therapy (PDT) can induce immunogenic cell death (ICD), which is characterized by the emission of damage-associated molecular patterns (DAMPs) from dying cells. This emission can trigger effective anti-tumor immunity.

View Article and Find Full Text PDF

Upconversion nanoparticles (UCNPs) are a promising nanoplatform for bioreagent formation for in vivo imaging, which emit UV and blue light under the action of near-infrared radiation, providing deep tissue penetration and maintaining a high signal-to-noise ratio. In the case of solid tumor visualization, the UCNP surface functionalization is required to ensure a long circulation time, biocompatibility, and non-toxicity. The effective UCNP accumulation in the solid tumors is determined by the disturbed architecture of the vascular network and lymphatic drainage.

View Article and Find Full Text PDF