Publications by authors named "Balakrishnan G"

Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.

View Article and Find Full Text PDF

Recent advances in quantum technologies are highly influencing the current technological scenario. Hybrid devices combining superconductors and topological insulators represent an excellent opportunity to study the topological superconducting phase, which offers interesting features that might have significant implications in the development of quantum sensing and quantum computing. Furthermore, focused ion beam techniques, whose versatility enables to create sophisticated devices with high degree of customization, can enhance the creation of complex devices.

View Article and Find Full Text PDF

Background The rise of infectious diseases and the emergence of resistant pathogens pose significant challenges to human health. In response to this global threat, researchers are exploring novel sources of bioactive compounds for effective antimicrobial therapies. One avenue of investigation is the study of halophilic bacteria and their secondary metabolites.

View Article and Find Full Text PDF

Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions.

View Article and Find Full Text PDF
Article Synopsis
  • * A photoemission and density-functional theory study was conducted on three compounds to explore how different intercalant elements affect their electronic structures at both the bulk and surface levels.
  • * Findings reveal that as the atomic number of the intercalant increases, there’s greater hybridization with NbS-derived conduction states, resulting in the formation of new electronic states at the Fermi level, which explains previously observed anomalous states and sheds light on tuning magnetic interactions.
View Article and Find Full Text PDF

We present a spectroscopic study of the magnetic properties ofFe3-δGeTe2single crystals with varying Fe content, achieved by tuning the stoichiometry of the crystals. We carried out x-ray absorption spectroscopy and analyzed the x-ray circular magnetic dichroism spectra using the sum rules, to determine the orbital and spin magnetic moments of the materials. We find a clear reduction of the spin and orbital magnetic moment with increasing Fe deficiency.

View Article and Find Full Text PDF

ConspectusNeurotechnology has seen dramatic improvements in the last three decades. The major focus in the field has been to design electrical communication platforms with high spatial resolution, stability, and translatability for understanding and affecting neural pathways. The deployment of nanomaterials in bioelectronics has enhanced the capabilities of conventional approaches employing microelectrode arrays (MEAs) for electrical interfaces, allowing the construction of miniaturized, high-performance neuroelectronics (Garg, R.

View Article and Find Full Text PDF

Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions.

View Article and Find Full Text PDF

Background: Primary malignant tumors of the spine are rare and most commonly occur in lumbar and thoracic vertebrae. We report a rare case of retroperitoneal chondrosarcoma of L3 that was managed with sagittal en bloc spondylectomy following chemoradiation.

Case Description: A 26-year-old woman was evaluated for abdominal pain with contrast-enhanced computed tomography of the abdomen and pelvis, which revealed a soft tissue retroperitoneal mass arising from L3.

View Article and Find Full Text PDF

Background: The pandemic, coronavirus disease 2019 (COVID-19) has led to a heavy toll on the human health. The aim of this study was to determine the influence of body fat distribution, evolving long-term effect on autonomic function, and its correlation with Chalder Fatigue Severity Score in post-COVID-19-recovered individuals of Indian ethnicity.

Materials And Method: A case-control study was conducted in the Department of Physiology on 31 cases and 29 age- and gender-matched controls.

View Article and Find Full Text PDF
Article Synopsis
  • - Spintronic devices using magnetic skyrmions are gaining interest, especially in how their performance can improve by exploring higher dimensions instead of just 2D thin films.
  • - Researchers have successfully demonstrated a method to inject skyrmions using charge currents, allowing them to move from a stable thin region of an FeGe material into a thicker, less stable area.
  • - This process requires a much lower current density than what's needed to shift traditional magnetic domain walls, suggesting a promising new approach for future spintronic device development.
View Article and Find Full Text PDF

Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds.

View Article and Find Full Text PDF

Dairy products that are contaminated by pathogenic microorganisms through unhygienic farm practices, improper transportation, and inadequate quality control can cause foodborne illness. Furthermore, inadequate storage conditions can increase the microflora of natural spoilage, leading to rapid deterioration. Ultrasound processing is a popular technology used to improve the quality of milk products using high-frequency sound waves.

View Article and Find Full Text PDF

Background: Low molecular weight heparin has proven to be safe and effective but is not without potential risks such as spontaneous bleeding in the abdominal cavity. There is limited evidence evaluating the true incidence of this potential risk and the available literature is primarily via case reports.

Case Summary: The purpose of this study was to identify the incidence and risk factors associated with enoxaparin use (prophylaxis or treatment) abdominal hematomas in a 350-bed community hospital during an 8-month time period.

View Article and Find Full Text PDF

The degradation of (micro)gels and fractal aggregates based on self-assembled amphiphilic triblock copolymers has been investigated in water by confocal microscopy and light scattering respectively. The triblock copolymer consisted of a central hydrophilic poly(acrylic acid) (pAA) block and two hydrophobic end blocks that contained an equal amount of randomly distributed -butyl acrylate (BA) and AA units. These latter units helped at tempering the hydrophobic end blocks resulting in the control and the fine tuning of the dynamics of the self-assembled triblock through the pH.

View Article and Find Full Text PDF

Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times.

View Article and Find Full Text PDF

Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.

View Article and Find Full Text PDF

Intestinal retentive devices have applications ranging from sustained oral drug delivery systems to indwelling ingestible medical devices. Current strategies to retain devices in the small intestine primarily focus on chemical anchoring using mucoadhesives or mechanical coupling using expandable devices or structures that pierce the intestinal epithelium. Here, the feasibility of intestinal retention using devices containing villi-inspired structures that mechanically interlock with natural villi of the small intestine is evaluated.

View Article and Find Full Text PDF

The noncentrosymmetric superconductor RuBhas in previous studies demonstrated remarkably unusual behaviour in its vortex lattice (VL), where the nearest neighbour directions of the vortices dissociate from the crystal lattice and instead show a complex field-history dependence, and the VL rotates as the field is changed. In this study, we look at the VL form factor of RuBduring this field-history dependence, to check for deviations from established models, such as the London model. We find that the data is well described by the anisotropic London model, which is in accordance with theoretical predictions that the alterations to the structure of the vortices due to broken inversion symmetry should be small.

View Article and Find Full Text PDF
Article Synopsis
  • * Conducted in Kodaikanal, India, the research utilized high-throughput amplicon sequencing to identify distinct microbial diversity in both the mushroom and its habitat, noting the dominance of specific bacterial genera like Ochrobactrum and Stenotrophomonas.
  • * The findings emphasize the need for further research on how these microbial communities influence the growth of P. cubensis, particularly regarding the environmental and human factors affecting their development.
View Article and Find Full Text PDF

In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products.

View Article and Find Full Text PDF

Hydrogels are promising materials for soft and implantable strain sensors owing to their large compliance (<100 kPa) and significant extensibility (ε >500%) compared to other polymer networks. Further, hydrogels can be functionalized to seamlessly integrate with many types of tissues. However, most current methods attempt to imbue additional electronic functionality to structural hydrogel materials by incorporating fillers with orthogonal properties such as electronic or mixed ionic conduction.

View Article and Find Full Text PDF

Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance.

View Article and Find Full Text PDF

Low-profile and transient ingestible electronic capsules for diagnostics and therapeutics can replace widely used yet invasive procedures such as endoscopies. Several gastrointestinal diseases such as reflux disease, Crohn's disease, irritable bowel syndrome, and eosinophilic esophagitis result in increased intercellular dilation in epithelial barriers. Currently, the primary method of diagnosing and monitoring epithelial barrier integrity is via endoscopic tissue biopsies followed by histological imaging.

View Article and Find Full Text PDF

Spin-valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards 'valleytronics'. The underlying valley-spin splitting is set by spin-orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date.

View Article and Find Full Text PDF