Publications by authors named "Balaji Sundara Sekar"

Natural phenethyl acetate (PEA), phenylacetic acid (PAA), ethyl phenylacetate (Et-PA), and phenethyl phenylacetate (PE-PA) are highly desirable aroma chemicals, but with limited availability and high price. Here, green, sustainable, and efficient bioproduction of these chemicals as natural products from renewable feedstocks was developed. PEA and PAA were synthesized from l-phenylalanine (l-Phe) via novel six- and five-enzyme cascades, respectively.

View Article and Find Full Text PDF

(R)-mandelic acid is an industrially important chemical, especially used for producing antibiotics. Its chemical synthesis often uses highly toxic cyanide to produce its racemic form, followed by kinetic resolution with 50% maximum yield. Here we report a green and sustainable biocatalytic method for producing (R)-mandelic acid from easily available styrene, biobased L-phenylalanine, and renewable feedstocks such as glycerol and glucose, respectively.

View Article and Find Full Text PDF

Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials.

View Article and Find Full Text PDF

As an important bulk chemical, benzoic acid is currently manufactured from nonrenewable feedstocks under harsh conditions. Although there are natural pathways for biosynthesis of benzoic acid, they are often inefficient and subjected to complex regulation. Here we develop a nonnatural enzyme cascade to efficiently produce benzoic acid from styrene or biogenic L-phenylalanine under mild conditions.

View Article and Find Full Text PDF

Production of 3-hydroxypropionic acid (3-HP) or 1,3-propanediol (1,3-PDO) production from glycerol is challenging due to the problems associated with cofactor regeneration, coenzyme B synthesis, and the instability of pathway enzymes. To address these complications, simultaneous production of 3-HP and 1,3-PDO, instead of individual production of each compound, was attempted. With over-expression of an aldehyde dehydrogenase, recombinant Klebsiella pneumoniae could co-produce 3-HP and 1,3-PDO successfully.

View Article and Find Full Text PDF

Background: Biologically, hydrogen (H) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H production yield is unsatisfactorily low as <4 mol H/mol glucose. To address this challenge, simultaneous production of H and ethanol has been suggested.

View Article and Find Full Text PDF

Background: Fermentative hydrogen (H2) production suffers from low carbon-to-H2 yield, to which problem, co-production of ethanol and H2 has been proposed as a solution. For improved co-production of H2 and ethanol, we developed Escherichia coli BW25113 ΔhycA ΔhyaAB ΔhybBC ΔldhA ΔfrdAB Δpta-ackA ΔpfkA (SH8*) and overexpressed Zwf and Gnd, the key enzymes in the pentose-phosphate (PP) pathway (SH8*_ZG). However, the amount of accumulated pyruvate, which was significant (typically 0.

View Article and Find Full Text PDF

Hydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted.

View Article and Find Full Text PDF