A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIP) are engaged by particular contexts or stimuli.
View Article and Find Full Text PDFAs genome-wide association studies shed light on the heterogeneous genetic underpinnings of many neurological diseases, the need to study the contribution of specific genes to brain development and function increases. Relying on mouse models to study the role of specific genetic manipulations is not always feasible since transgenic mouse lines are quite costly and many novel disease-associated genes do not yet have commercially available genetic lines. Additionally, it can take years of development and validation to create a mouse line.
View Article and Find Full Text PDFSchizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients.
View Article and Find Full Text PDFThe cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task.
View Article and Find Full Text PDFAim: The most important parameter to assess prior to implant fixture placement is the available bone width. Radiographic techniques have been found to be inadequate in providing this valuable information, unlike clinical techniques. The purpose of the present study was to determine the accuracy of various clinical techniques of ridge mapping before implant fixture placement.
View Article and Find Full Text PDFBackground: Candida Associated Denture Stomatitis is the prevalent fungal pathosis in denture wearers, especially in immunocompromized patients. Existing antifungal agents are ineffective since the Candida species become resistant and also, they become toxic. Origanum vulgare is a herbal plant with high anti-fungal activity against Candida of blood and urine origin.
View Article and Find Full Text PDFAim: The aim of this article is to present a comprehensive review and a classification system on the various errors that occur during the ideal arrangement of artificial teeth for complete denture prosthesis.
Materials And Methods: Assessment of various classification systems presented for errors in artificial tooth arrangement and identifying the lacunae in each system.
Results: A comprehensive review and a classification system on the various errors that occur during the ideal arrangement of artificial teeth for complete denture prosthesis have been presented.
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats.
View Article and Find Full Text PDFHow specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear.
View Article and Find Full Text PDF