Purpose: Recent developments in genomics have led to expanded carrier screening panels capable of assessing hundreds of causal mutations for genetic disease. This new technology enables simultaneous measurement of carrier frequencies for many diseases. As the resultant rank-ordering of carrier frequencies impacts the design and prioritization of screening programs, the accuracy of this ranking is a public health concern.
View Article and Find Full Text PDFObjective: To determine women's healthcare providers' knowledge and attitudes regarding genetic disorders and expanded genetic screening.
Design: Survey of American Society for Reproductive Medicine 2010 and American College of Obstetricians and Gynecologists 2011 Annual Meeting attendees. The survey included 60 items (12 demographic, 10 knowledge, and 38 attitude).
Mendelian disorders are individually rare but collectively common, forming a 'long tail' of genetic disease. A single highly accurate assay for this long tail would allow the scaling up of the Jewish community's successful campaign of population screening for Tay-Sachs disease to the general population, thereby improving millions of lives, greatly benefiting minority health and saving billions of dollars. This need has been addressed by designing a universal carrier test: a non-invasive, saliva-based assay for more than 100 Mendelian diseases across all major population groups.
View Article and Find Full Text PDFProgression through the Caulobacter cell cycle is driven by the master regulator CtrA, an essential two-component signaling protein that regulates the expression of nearly 100 genes. CtrA is abundant throughout the cell cycle except immediately prior to DNA replication. However, the expression of CtrA-activated genes is generally restricted to S phase.
View Article and Find Full Text PDFWe developed Graemlin 2.0, a new multiple network aligner with (1) a new multi-stage approach to local network alignment; (2) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (3) a parameter learning algorithm that uses a training set of known network alignments to learn parameters for our scoring function and thereby adapt it to any set of networks; and (4) an algorithm that uses our scoring function to find approximate multiple network alignments in linear time. We tested Graemlin 2.
View Article and Find Full Text PDFGenome-wide scans for recent positive selection in humans have yielded insight into the mechanisms underlying the extensive phenotypic diversity in our species, but have focused on a limited number of populations. Here, we present an analysis of recent selection in a global sample of 53 populations, using genotype data from the Human Genome Diversity-CEPH Panel. We refine the geographic distributions of known selective sweeps, and find extensive overlap between these distributions for populations in the same continental region but limited overlap between populations outside these groupings.
View Article and Find Full Text PDFEach year, the Pharmacogenetics Research Network (PGRN) holds an analysis workshop for the members of the PGRN to share new methodologies, study design approaches and to discuss real data applications. This event is closed to members of the PGRN, but the methods presented are relevant to others conducting pharmacogenomics research. This special report describes many of the novel approaches discussed at the workshop and provides a resource for investigators in the field performing pharmacogenomics data analysis.
View Article and Find Full Text PDFWe have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C.
View Article and Find Full Text PDFIt is quickly becoming apparent that situating human variation in a pathway context is crucial to understanding its phenotypic significance. Toward this end, we have developed a general method for finding pathways associated with traits that control for pathway size. We have applied this method to a new whole genome survey of coding SNP variation in 187 patients afflicted with Parkinson disease (PD) and 187 controls.
View Article and Find Full Text PDFThe collection of multiple genome-scale datasets is now routine, and the frontier of research in systems biology has shifted accordingly. Rather than clustering a single dataset to produce a static map of functional modules, the focus today is on data integration, network alignment, interactive visualization and ontological markup. Because of the intrinsic noisiness of high-throughput measurements, statistical methods have been central to this effort.
View Article and Find Full Text PDFThe recent proliferation of protein interaction networks has motivated research into network alignment: the cross-species comparison of conserved functional modules. Previous studies have laid the foundations for such comparisons and demonstrated their power on a select set of sparse interaction networks. Recently, however, new computational techniques have produced hundreds of predicted interaction networks with interconnection densities that push existing alignment algorithms to their limits.
View Article and Find Full Text PDF: A report on the 10th annual Research in Computational Molecular Biology (RECOMB) Conference, Venice, Italy, 2-5 April 2006.
View Article and Find Full Text PDFAccurate determination of functional interactions among proteins at the genome level remains a challenge for genomic research. Here we introduce a genome-scale approach to functional protein annotation--phylogenomic mapping--that requires only sequence data, can be applied equally well to both finished and unfinished genomes, and can be extended beyond single genomes to annotate multiple genomes simultaneously. We have developed and applied it to more than 200 sequenced bacterial genomes.
View Article and Find Full Text PDF