Publications by authors named "Bakurskiy S"

Superconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition usingcompensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential.

View Article and Find Full Text PDF

We have studied the proximity effect in an SF1S1F2s superconducting spin valve consisting of a massive superconducting electrode (S) and a multilayer structure formed by thin ferromagnetic (F1,2) and superconducting (S1, s) layers. Within the framework of the Usadel equations, we have shown that changing the mutual orientation of the magnetization vectors of the F1,2 layers from parallel to antiparallel serves to trigger superconductivity in the outer thin s-film. We studied the changes in the pair potential in the outer s-film and found the regions of parameters with a significant spin-valve effect.

View Article and Find Full Text PDF

We have theoretically studied the transport properties of the SIsNSOF structure consisting of thick (S) and thin (s) films of superconductor, an insulator layer (I), a thin film of normal metal with spin-orbit interaction (SOI) (NSO), and a monodomain ferromagnetic layer (F). The interplay between superconductivity, ferromagnetism, and spin-orbit interaction allows the critical current of this Josephson junction to be smoothly varied over a wide range by rotating the magnetization direction in the single F-layer. We have studied the amplitude of the spin valve effect and found the optimal ranges of parameters.

View Article and Find Full Text PDF

In this paper, we present a theoretical study of electronic transport in planar Josephson Superconductor-Normal Metal-Superconductor (SN-N-NS) bridges with arbitrary transparency of the SN interfaces. We formulate and solve the two-dimensional problem of finding the spatial distribution of the supercurrent in the SN electrodes. This allows us to determine the scale of the weak coupling region in the SN-N-NS bridges, i.

View Article and Find Full Text PDF

We theoretically investigated the proximity effect in SNSOF and SF'F structures consisting of a superconductor (S), a normal metal (NSO), and ferromagnetic (F',F) thin films with spin-orbit interaction (SOI) in the NSO layer. We show that a normal layer with spin-orbit interaction effectively suppresses triplet correlations generated in a ferromagnetic layer. Due to this effect, the critical temperature of the superconducting layer in the SNSOF multilayer turns out to be higher than in a similar multilayer without spin-orbit interaction in the N layer.

View Article and Find Full Text PDF

Thin films of diluted magnetic alloys are widely used in superconducting spintronics devices. Most studies rely on transport measurements and assume homogeneous magnetic layers. Here we examine on a local scale the electronic properties of the well-known two-layer superconductor/ferromagnet structure Nb/CuNi.

View Article and Find Full Text PDF

The hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron.

View Article and Find Full Text PDF

High-performance modeling of neurophysiological processes is an urgent task that requires new approaches to information processing. In this context, two- and three-junction superconducting quantum interferometers with Josephson weak links based on gold nanowires are fabricated and investigated experimentally. The studied cells are proposed for the implementation of bio-inspired neurons-high-performance, energy-efficient, and compact elements of neuromorphic processor.

View Article and Find Full Text PDF

Unlike conventional planar Josephson junctions, nanowire-based devices have a bridge geometry with a peculiar coupling to environment that can favor non-equilibrium electronic phenomena. Here we measure the influence of the electron bath overheating on critical current of several bridge-like junctions built on a single Au-nanowire. Using the Usadel theory and applying the two-fluid description for the normal and superconducting components of the flowing currents, we reveal and explain the mutual influence of the neighbouring junctions on their characteristics through various processes of the electron gas overheating.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the proximity effect in superconductor/ferromagnetic superlattices, focusing on how variations in ferromagnetic layer thickness and coercive fields affect superconductivity.
  • Using the Usadel equations, the study identifies conditions under which the magnetic alignment of adjacent ferromagnetic layers leads to significant changes in the superconducting order parameter.
  • Experimental observations show that the resistive transition of a Nb/Co multilayer exhibits multiple steps, indicating that local magnetization affects superconductive behavior, suggesting potential applications in tunable kinetic inductors for artificial neural networks.
View Article and Find Full Text PDF

We examine the influence of superconductivity on the magneto-transport properties of a ferromagnetic Ni nanowire connected to Nb electrodes. We show experimentally and confirm theoretically that the Nb/Ni interface plays an essential role in the electron transport through the device. Just below the superconducting transition, a strong inverse proximity effect from the nanowire suppresses superconducting correlations at Nb/Ni interfaces, resulting in a conventional anisotropic magneto-resistive response.

View Article and Find Full Text PDF
Article Synopsis
  • A theoretical framework is proposed to understand how ultrafast population transfer and magnetization reversal in superconducting meta-atoms occur when exposed to short magnetic field pulses.
  • A method using stimulated Raman Λ-type transitions is suggested to enable rapid quantum operations on the picosecond timeframe.
  • An experimental setup for implementing this ultrafast control within a circuit-on-chip is also introduced.
View Article and Find Full Text PDF

We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction.

View Article and Find Full Text PDF

We study analytically and numerically the influence of the quasiparticle charge imbalance on the dynamics of the asymmetric Josephson stack formed by two inequivalent junctions: the fast capacitive junction JJ and slow non-capacitive junction JJ . We find, that the switching of the fast junction into resistive state leads to significant increase of the effective critical current of the slow junction. At the same time, the initial switching of the slow junction may either increase or decrease the effective critical current of the fast junction, depending on ratio of their resistances and the value of the capacitance.

View Article and Find Full Text PDF

The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers.

View Article and Find Full Text PDF

We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process.

View Article and Find Full Text PDF