Publications by authors named "Bakthavathsalam Padmavathy"

Gold coated magnetic nanoparticles (Au@MNPs), modified with DNA sequences give dispersible electrodes that can detect ultralow amounts of microRNAs and other nucleic acids but, as with most other sensors, they require calibration. Herein we show how to adapt a calibration free approach for electrochemical aptamer-based sensors on bulk electrodes to microRNA (miR-21) detection with methylene blue terminated DNA modified Au@MNPs. The electrochemical square wave voltammetry signal from the DNA-Au@MNPs when collected at a bulk electrode under magnetic control, decreases upon capture of miR-21.

View Article and Find Full Text PDF

We propose a theoretical model for the influence of confinement on biomolecular binding at the single-molecule scale at equilibrium, based on the change of the number of microstates (localization and orientation) upon reaction. Three cases are discussed: DNA sequences shorter and longer than the single strain DNA Kuhn length and spherical proteins, confined into a spherical container (liposome, droplet, etc.).

View Article and Find Full Text PDF

The direct quantification of programmed death-ligand 1 (PD-L1) as a biomarker for cancer diagnosis, prognosis and treatment efficacy is an unmet clinical need. Herein, we demonstrate the first report of rapid, ultrasensitive and selective electrochemical detection of PD-L1 directly in undiluted whole blood using modified gold-coated magnetic nanoparticles as "dispersible electrodes" with an ultralow detection limit of 15 attomolar and a response time of only 15 minutes.

View Article and Find Full Text PDF

Knowledge of the interaction between aptamer and protein is integral to the design and development of aptamer-based biosensors. Nanoparticles functionalized with aptamers are commonly used in these kinds of sensors. As such, studies into how the number of aptamers on the nanoparticle surface influence both kinetics and thermodynamics of the binding interaction are required.

View Article and Find Full Text PDF

A massively parallel single particle sensing method based on core-satellite formation of Au nanoparticles was introduced for the detection of interleukin 6 (IL-6). This method exploits the fact that the localized plasmon resonance (LSPR) of the plasmonic nanoparticles will change as a result of core-satellite formation, resulting in a change in the observed color. In this method, the hue (color) value of thousands of 67 nm Au nanoparticles immobilized on a glass coverslip surface is analyzed by a Matlab code before and after the addition of reporter nanoparticles containing IL-6 as target protein.

View Article and Find Full Text PDF

The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety.

View Article and Find Full Text PDF

We report on the characterisation of the optical properties and dynamic behaviour of optically trapped single stimuli-responsive plasmonic nanoscale assemblies. Nano-assemblies consist of a core-satellite arrangement where the constituent nanoparticles are connected by the thermoresponsive polymer, poly(DEGA-co-OEGA). The optical tweezers allow the particles to be held isolated in solution and interrogated using dark-field spectroscopy.

View Article and Find Full Text PDF

Herein, a glucose meter-based immunosensing platform is developed that allows the quantification of procalcitonin (PCT) in whole blood samples. PCT is a biomarker for sepsis and its early detection would improve the safety of the patient, as the diagnostic process will be easier and faster. The method employs liposomes with encapsulated glucose as a signal generation tag, which are then used in a sandwich immunoassay by conjugating an antibody to the liposome.

View Article and Find Full Text PDF

The development of portable nucleic acid diagnostic devices has the potential to expand the availability of molecular diagnostics into low-resource settings. One of the promising solutions for rapid and simple DNA amplification is the use of Rayleigh-Bernard natural convection which is caused by a buoyancy-driven thermal gradient of liquid when heated from below. This natural convection avoids the use of the complex and sophisticated hardware that is required for precise maintenance of temperature cycles in conventional PCR.

View Article and Find Full Text PDF

Light can be used to spatially resolve electrochemical measurements on a semiconductor electrode. This phenomenon has been explored to detect DNA hybridization with light-addressable potentiometric sensors and, more recently, with light-addressable amperometric sensors based on organic-monolayer-protected Si(100). Here, a contribution to the field is presented by comparing sensing performances when bovine serum albumin (BSA) and hexaethylene glycol (OEG) are employed as antifouling layers that resist nonspecific adsorption to the DNA-modified interface on Si(100) devices.

View Article and Find Full Text PDF

Acute respiratory tract infections are a major cause of morbidity and mortality and represent a significant burden on the health care system. Laboratory testing is required to definitively distinguish infecting influenza virus from other pathogens, resulting in prolonged emergency department (ED) visits and unnecessary antibiotic use. Recently available rapid point-of-care tests (POCT) may allow for appropriate use of antiviral and antibiotic treatments and decrease patient lengths of stay.

View Article and Find Full Text PDF

Background: In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications.

View Article and Find Full Text PDF