Glioblastoma (GBM) is a highly aggressive brain cancer with a low survival rate, prompting the exploration of novel therapeutic strategies. Immune checkpoint inhibitors have shown promise in cancer treatment but are associated with immune-related toxicities and brain penetration. Here, we present a targeted approach using an adeno-associated virus serotype 9 (AAV9) to systemically deliver a single-chain fragment variable antibody against PD-1 (scFv-PD-1) into the tumor microenvironment (TME).
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance.
View Article and Find Full Text PDFIntroduction: Leadership skills are essential for a successful career in medical research but are often not formally taught. To address these gaps, we designed a leadership development program for early-stage investigators.
Methods: A 9-month virtual program with monthly 2-hour interactive sessions was designed, covering topics such as Leadership in Research, Mentoring, Building Diverse and Inclusive Teams, Managing Conflict, Influencing without Authority, Grant Administration, and Management.
Front Cell Neurosci
April 2023
The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination.
View Article and Find Full Text PDF() is a crucial subunit within the γ-secretase complex and regulates β-amyloid (Aβ) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aβ levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases.
View Article and Find Full Text PDFMitochondrial dynamics can regulate Major Histocompatibility Complex (MHC)-I antigen expression by cancer cells and their immunogenicity in mice and in patients with malignancies. A crucial role in the mitochondrial fragmentation connection with immunogenicity is played by the IRE1α-XBP-1s axis. XBP-1s is a transcription factor for aminopeptidase TPP2, which inhibits MHC-I complex cell surface expression likely by degrading tumor antigen peptides.
View Article and Find Full Text PDFWe describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras [PROTACs]) that is capable of both accurately quantifying protein levels in whole-cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small-molecule inhibitors and PROTACs in a high-throughput format with unmodified cell lines.
View Article and Find Full Text PDFThe lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation.
View Article and Find Full Text PDFOlfactory receptors (ORs), responsible for the sense of smell, play an essential role in various physiological processes outside the nasal epithelium, including cancer. In breast cancer, however, the expression and function of ORs remain understudied. We examined the significance of OR transcript abundance in primary and metastatic breast cancer to the brain, bone, and lung.
View Article and Find Full Text PDFEpitranscriptomic variations include >140 different RNA modifications, many of which can serve as disease biomarkers. Owing to the challenges on synthesizing modified RNA oligos, majority of earlier studies on the effects of RNA modifications to RNA duplexes focused on selected individual epitranscriptomic variation. There are also limited development on the computational modeling of RNA duplexes containing a specific epitranscriptomic variation.
View Article and Find Full Text PDFIschemic stroke remains a major cause of death, and anti-inflammatory strategies hold great promise for preventing major brain injury during reperfusion. In the past decade, stem cell-derived extracellular vesicles (EVs) have emerged as novel therapeutic effectors in immune modulation. However, the intravenous delivery of EVs into the ischemic brain remains a challenge due to poor targeting of unmodified EVs, and the costs of large-scale production of stem cell-derived EVs hinder their clinical application.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - 1 or 2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs.
View Article and Find Full Text PDFDespite decades of research, glioblastoma (GBM) remains invariably fatal among all forms of cancers. The high level of inter- and intratumoral heterogeneity along with its biological location, the brain, are major barriers against effective treatment. Molecular and single cell analysis identifies different molecular subtypes with varying prognosis, while multiple subtypes can reside in the same tumor.
View Article and Find Full Text PDFAdoptive cell transfer of ex vivo expanded regulatory T cells (T) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such T therapies to the clinic has been slow. Because T homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous T responses.
View Article and Find Full Text PDFBackground: Pediatric high-grade gliomas (pHGGs) are aggressive primary brain tumors with local invasive growth and poor clinical prognosis. Treatment of pHGGs is particularly challenging given the intrinsic resistance to chemotherapy, an absence of novel therapeutics, and the difficulty of drugs to reach the tumor beds. Accumulating evidence suggests that production of reactive oxygen species (ROS) and misfolded proteins, which typically leads to endoplasmic reticulum (ER) stress, is an essential mechanism in cancer cell survival.
View Article and Find Full Text PDFNeuro Oncol
December 2020
Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by . We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.
View Article and Find Full Text PDFGlioblastoma is the most common and aggressive brain tumor in adults. Most patients die within a year and long-term survival remains rare, owing to a combination of rapid progression/degeneration, lack of successful treatments, and high recurrence rates. Extracellular vesicles are cell-derived membranous structures involved in numerous physiological and pathological processes.
View Article and Find Full Text PDFMult Scler J Exp Transl Clin
July 2020
Background: In multiple sclerosis (MS), clinical assessment, MRI and cerebrospinal fluid are important in the diagnostic process. However, no blood biomarker has been confirmed as a useful tool in the diagnostic work-up.
Objectives: Blood platelets contain a rich spliced mRNA repertoire that can alter during megakaryocyte development but also during platelet formation and platelet circulation.