As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008.
View Article and Find Full Text PDFThe consumption of coffee and other caffeinated drinks is increasingly popular across the globe. In the United States, 90% of adults consume at least one caffeinated beverage a day. While caffeine consumption of up to 400 mg/d is not generally associated with negative effects on human health, the impact of caffeine on the gut microbiome and individual gut microbiota remains unclear.
View Article and Find Full Text PDFOn November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life.
View Article and Find Full Text PDFThe Joint Workshop on Induced Special Regions convened scientists and planetary protection experts to assess the potential of inducing special regions through lander or rover activity. An Induced Special Region is defined as a place where the presence of the spacecraft could induce water activity and temperature to be sufficiently high and persist for long enough to plausibly harbor life. The questions the workshop participants addressed were: (1) What is a safe stand-off distance, or formula to derive a safe distance, to a purported special region? (2) Questions about RTGs (Radioisotope Thermoelectric Generator), other heat sources, and their ability to induce special regions.
View Article and Find Full Text PDFWhile cold-adapted bacteria isolated from marine or terrestrial low temperature environments share many similarities, cold-adapted bacteria from terrestrial environments usually grow over a broader range of temperatures suggesting different constraints of these two low temperature environments. The diversity of habitats from which Psychrobacter have been isolated (e.g.
View Article and Find Full Text PDFPermafrost accounts for 27% of all soil ecosystems and harbors diverse microbial communities. Our understanding of microorganisms in permafrost, their activities and adaptations, remains limited. Using five subzero-growing (cryophilic) permafrost bacteria, we examined features of cold adaptation through comparative genomic analyses with mesophilic relatives.
View Article and Find Full Text PDFHere, we report the draft genome sequence of Rhodotorula sp. strain JG1b, a yeast that was isolated from ice-cemented permafrost in the upper-elevation McMurdo Dry Valleys, Antarctica. The sequenced genome size is 19.
View Article and Find Full Text PDFThe permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C.
View Article and Find Full Text PDFThe actinobacterium Rhodococcus sp. JG-3 is an aerobic, eurypsychrophilic, soil bacterium isolated from permafrost in the hyper arid Upper Dry Valleys of Antarctica. It is yellow pigmented, gram positive, moderately halotolerant and capable of growth from 30 °C down to at least -5 °C.
View Article and Find Full Text PDFHere, we announce the genome sequence of Methanosarcina soligelidi SMA-21, an anaerobic methanogenic archaeon that was previously isolated from Siberian permafrost-affected soil. The sequencing of strain SMA-21 yielded a 4.06-Mb genome with 41.
View Article and Find Full Text PDFA committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team.
View Article and Find Full Text PDFWhile bacterial communities from McMurdo Dry Valley soils have been studied using molecular techniques, data from permafrost are particularly scarce given the logistical difficulties of sampling. This study examined the molecular diversity and culturability of bacteria in permafrost from the Taylor Valley (TV), Antarctica. A 16S rRNA gene clone library was constructed to assess bacterial diversity, while a clone library of the RNA polymerase beta subunit (rpoB) gene was constructed to examine amino acid composition of an essential protein-coding gene.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2011
The habitability of icy environments may be limited by low temperature, low nutrient concentrations, high solute concentrations and the physical ice matrix. The basal ice of ice sheets and glaciers contains sediments that may be a source of nutrients for microbial activity. Here we quantify microbial respiration and active cell populations of Antarctic glacial isolates Paenisporosarcina sp.
View Article and Find Full Text PDFMetabolic activity, but not growth, has been observed in ice at temperatures from -5°C to -32°C. To improve understanding of metabolism in ice, we simultaneously examined various aspects of metabolism ((14) C-acetate utilization, macromolecule syntheses and viability via reduction of CTC) of the glacial isolates Sporosarcina sp. B5 and Chryseobacterium sp.
View Article and Find Full Text PDFMethanogenic archaea have a unique role in Earth's global carbon cycle as producers of the greenhouse gas methane (CH4 ). However, despite the fact that ice covers 11% of Earth's continental landmass, evidence for methanogenic activity in subglacial environments has yet to be clearly demonstrated. Here we present genetic, biochemical and geochemical evidence indicative of an active population of methanogens associated with subglacial sediments from Robertson Glacier (RG), Canadian Rockies.
View Article and Find Full Text PDFA combination of culture-dependent and -independent techniques was used to characterize a bacterial community, examine cold adaptation of isocitrate lyase (icl) genes, and detect genes with important ecological functions in a permafrost sample from the Bykovsky Peninsula on the Laptev Sea coast of northeast Siberia. According to the 16S rRNA gene sequence, 47 of the cultured isolates were members of the phyla Firmicutes, Proteobacteria, and Actinobacteria, with 85% of the isolates belonging to the genera Arthrobacter and Planococcus. The 16S rRNA gene clone library derived from DNA from the same permafrost sample contained sequences from the same phyla plus a few from Acidobacteria, but favored the Firmicutes at the cost of the Actinobacteria.
View Article and Find Full Text PDFPsychrobacter arcticus strain 273-4, which grows at temperatures as low as -10 degrees C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P.
View Article and Find Full Text PDFWe report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component.
View Article and Find Full Text PDFSpacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure.
View Article and Find Full Text PDFPermafrost soils are extreme environments that exert low-temperature, desiccation, and starvation stress on bacteria over thousands to millions of years. To understand how Psychrobacter arcticus 273-4 survived for >20,000 years in permafrost, transcriptome analysis was performed during growth at 22 degrees C, 17 degrees C, 0 degrees C, and -6 degrees C using a mixed-effects analysis of variance model. Genes for transcription, translation, energy production, and most biosynthetic pathways were downregulated at low temperatures.
View Article and Find Full Text PDFWe describe the development of genetic tools (electroporation, conjugation, vector for targeted gene replacement) for use in the psychrophile Psychrobacter arcticus 273-4 to test hypotheses about cold adaptation. Successful electroporation only occurred with nonstandard parameters, such as: electrocompetent cells freshly prepared from stationary-phase cultures, high field strengths (25 kV cm(-1)), long recovery times (16-24 h), and selection with low concentrations of antibiotics. Transformation frequencies were greatly affected by a methylation-dependent restriction barrier homologous to DpnI.
View Article and Find Full Text PDFA scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place.
View Article and Find Full Text PDFIt is crucial to examine the physiological processes of psychrophiles at temperatures below 4 degrees C, particularly to facilitate extrapolation of laboratory results to in situ activity. Using two dimensional electrophoresis, we examined patterns of protein abundance during growth at 16, 4, and -4 degrees C of the eurypsychrophile Psychrobacter cryohalolentis K5 and report the first identification of cold inducible proteins (CIPs) present during growth at subzero temperatures. Growth temperature substantially reprogrammed the proteome; the relative abundance of 303 of the 618 protein spots detected (approximately 31% of the proteins at each growth temperature) varied significantly with temperature.
View Article and Find Full Text PDFThree Gram-negative, non-motile, non-pigmented, oxidase-positive coccobacilli capable of growth at temperatures from -10 to 30 degrees C and salinities of 0 to 1.7 M NaCl were isolated from Siberian permafrost and characterized. Both 16S rRNA and gyrB gene sequencing studies placed the isolates in the Gammaproteobacteria within the genus Psychrobacter.
View Article and Find Full Text PDFThis study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.
View Article and Find Full Text PDF