Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations.
View Article and Find Full Text PDFCLEC16A is emerging as an important genetic risk factor for several autoimmune disorders and for Parkinson disease (PD), opening new avenues for translational research and therapeutic development. While the exact role of CLEC16A in health and disease is still being elucidated, the gene plays a critical role in the regulation of autophagy, mitophagy, endocytosis, intracellular trafficking, immune function, and in biological processes such as insulin secretion and others that are important to cellular homeostasis. As shown in both human and animal modeling studies, CLEC16A hypofunction predisposes to both autoinflammatory phenotype and neurodegeneration.
View Article and Find Full Text PDFCLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16a mice, to investigate the loss of function of CLEC16A.
View Article and Find Full Text PDFCLEC16A is implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout (KO), Clec16a mice to address the role of CLEC16A loss of function. KO mice exhibited loss of adipose tissue and severe weight loss in response to defective autophagic flux and exaggerated endoplasmic reticulum (ER) stress and robust cytokine storm.
View Article and Find Full Text PDFBackground: Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated.
Methods: A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia.
Copy number variants (CNVs) are suggested to have a widespread impact on the human genome and phenotypes. To understand the role of CNVs across human diseases, we examine the CNV genomic landscape of 100,028 unrelated individuals of European ancestry, using SNP and CGH array datasets. We observe an average CNV burden of ~650 kb, identifying a total of 11,314 deletion, 5625 duplication, and 2746 homozygous deletion CNV regions (CNVRs).
View Article and Find Full Text PDFPurpose Of Review: To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D).
Recent Findings: Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis.
locus polymorphisms have been associated with several autoimmune diseases. We overexpressed in YTS natural killer (NK) cells and observed reduced NK cell cytotoxicity and IFN-γ release, delayed dendritic cell (DC) maturation, decreased conjugate formation, cell-surface receptor downregulation and increased autophagy. In contrast, siRNA mediated knockdown resulted in increased NK cell cytotoxicity, reversal of receptor expression and disrupted mitophagy.
View Article and Find Full Text PDFCLEC16A is implicated in multiple autoimmune diseases. We generated Clec16a inducible knockout (KO) mice to examine the functional link between CLEC16A auto-inflammation and autoimmunity. Clec16a KO mice exhibited weight loss and thymic and splenic atrophy.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2018
Central conducting lymphatic anomaly (CCLA) is one of the complex lymphatic anomalies characterized by dilated lymphatic channels, lymphatic channel dysmotility and distal obstruction affecting lymphatic drainage. We performed whole exome sequencing (WES) of DNA from a four-generation pedigree and examined the consequences of the variant by transfection of mammalian cells and morpholino and rescue studies in zebrafish. WES revealed a heterozygous mutation in EPHB4 (RefSeq NM_004444.
View Article and Find Full Text PDFAcute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG.
View Article and Find Full Text PDFFood allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays.
View Article and Find Full Text PDFCommon variable immunodeficiency disorder (CVID) is the most common symptomatic primary immunodeficiency in adults, characterized by B-cell abnormalities and inadequate antibody response. CVID patients have considerable autoimmune comorbidity and we therefore hypothesized that genetic susceptibility to CVID may overlap with autoimmune disorders. Here, in the largest genetic study performed in CVID to date, we compare 778 CVID cases with 10,999 controls across 123,127 single-nucleotide polymorphisms (SNPs) on the Immunochip.
View Article and Find Full Text PDFClec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy.
View Article and Find Full Text PDFType 1 Diabetes (T1D) is a chronic multifactorial disease with a strong genetic component, which, through interactions with specific environmental factors, triggers disease onset. T1D typically manifests in early to mid childhood through the autoimmune destruction of pancreatic β cells resulting in a lack of insulin production. Historically, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D.
View Article and Find Full Text PDFDiabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.
View Article and Find Full Text PDFBackground: One of the most important factors responsible for the calcific failure of bioprosthetic heart valves is glutaraldehyde crosslinking. Ethanol (EtOH) incubation after glutaraldehyde crosslinking has previously been reported to confer anticalcification efficacy for bioprostheses. The present studies investigated the anticalcification efficacy in vivo of the novel crosslinking agent, triglycidyl amine (TGA), with or without EtOH incubation, in comparison with glutaraldehyde.
View Article and Find Full Text PDFBackground: Increased serotonin (5-hydroxytryptamine [5HT]) receptor (5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and interrelated extracellular matrix remodeling events.
View Article and Find Full Text PDFThe use of stents for vascular disease has resulted in a paradigm shift with significant improvement in therapeutic outcomes. Polymer-coated drug-eluting stents (DES) have also significantly reduced the incidence of reobstruction post stenting, a disorder termed in-stent restenosis. However, the current DESs lack the capacity for adjustment of the drug dose and release kinetics to the disease status of the treated vessel.
View Article and Find Full Text PDFSerotonin (5HT) receptor signaling and 5HT-related agents, such as the anorexogen fenfluramine (Fen), have been associated with heart valve disease. We investigated the hypothesis that Fen may disrupt mitral valve interstitial cell (MVIC) homeostasis through its effects on mitogenesis and extracellular matrix biosynthesis. Normal and myxomatous mitral valves, both human and canine, were harvested, and primary MVIC cultures were established.
View Article and Find Full Text PDFBackground: Local drug delivery from polymer-coated stents has demonstrated efficacy for preventing in-stent restenosis; however, both the inflammatory effects of polymer coatings and concerns about late outcomes of drug-eluting stent use indicate the need to investigate innovative approaches, such as combining localized gene therapy with stent angioplasty. Thus, we investigated the hypothesis that adenoviral vectors (Ad) could be delivered from the bare-metal surfaces of stents with a synthetic complex for reversible vector binding.
Methods And Results: We synthesized the 3 components of a gene vector binding complex: (1) A polyallylamine bisphosphonate with latent thiol groups (PABT), (2) a polyethyleneimine (PEI) with pyridyldithio groups for amplification of attachment sites [PEI(PDT)], and (3) a bifunctional (amine- and thiol-reactive) cross-linker with a labile ester bond (HL).
EURASIP J Bioinform Syst Biol
June 2010
Gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. Gene selection, as an important step for improved diagnostics, screens tens of thousands of genes and identifies a small subset that discriminates between disease types. A two-step gene selection method is proposed to identify informative gene subsets for accurate classification of multiclass phenotypes.
View Article and Find Full Text PDF