Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4β2-nAChRs.
View Article and Find Full Text PDFNovel monomethylauristatin E (MMAE) prodrug 8 was designed and prepared that bound cell surface glycoprotein integrin αvβ3, and was activated using legumain protease as a catalyst. Upon activation, prodrug 8 strongly induced the death of MDA-MB-435 cells that express integrin αvβ3 on cell surface. Efficacies of prodrug 8 were also determined in vivo using animal models of 4T1 murine breast cancer, D121 Lewis lung carcinoma, and MDA-MB-435 human breast cancer.
View Article and Find Full Text PDFAMOP-H-OH (sazetidine-A; 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) and some sulfur-bearing analogues were tested for their activities in vitro against human alpha4beta2-, alpha4beta4-, alpha3beta4*- and alpha1*-nicotinic acetylcholine receptors (nAChRs). AMOP-H-OH was also assessed in an antidepressant efficacy model. AMOP-H-OH and some of its analogues have high potency and selectivity for alpha4beta2-nAChRs over other nAChR subtypes.
View Article and Find Full Text PDFEmulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create 'nature-like' and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. This article describes some of our works on various sugar amino acids and many other related building blocks, like furan amino acids, pyrrole amino acids etc.
View Article and Find Full Text PDF