This work presents results on the efficiency of newly designed zinc phthalocyanine-mediated photodynamic therapy of both tumoral and nontumoral cell models using the MTT assay. Further detailed examinations of mechanistic and cell biological effects were focused on the HELA cervical cancer cell model. Here, ROS production, changes in the mitochondrial membrane potential, the determination of genotoxicity, and protein changes determined by capillary chromatography and tandem mass spectrometry with ESI were analyzed.
View Article and Find Full Text PDFBackground/aim: Colorectal cancer (CRC) is one of the most widespread malignancies. One of the alternative therapeutic methods appears to be photodynamic therapy (PDT).
Materials And Methods: This study investigated the efficiency of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc (ZnTPPS) and chloro-aluminum phthalocyanine disulfonate (ClAlPcS) with two commercial photosensitive compounds 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) and tetramethylthionine chloride (methylene blue, MB) in PDT for CRC in vitro.
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells.
View Article and Find Full Text PDFUltraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation.
View Article and Find Full Text PDFPhotodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory.
View Article and Find Full Text PDFClinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects.
View Article and Find Full Text PDFA small series of N-aryl-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-amines was synthesized from easily accessible 1-phenyl-1H-pyrazol-3-ol via 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine and 7-iodo-4-methyl-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine intermediates and their subsequent use in palladium catalyzed Buchwald-Hartwig cross-coupling reaction with various anilines. Majority of the compounds were not significantly cytotoxic to melanoma G361 cells in the dark up to 10 µM concentration, but their activity could be increased by irradiation with visible blue light (414 nm). The most active compound 10 possessed EC values of 3.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
Background: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is one of the treatments for cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation, and oxygen O, which is converted to cytotoxic O and other forms of reactive oxygen species (ROS), causing selective damage to the target tissue. In this work, we studied effect of two porphyrin photosensitizers TMPyP and ZnTPPS at three different concentrations (0.
View Article and Find Full Text PDFAs resistance of bacterial strains to antibiotics is a major problem, there is a need to look for alternative treatments. One option is antimicrobial photodynamic inactivation (aPDI). The pathogenic cells are targeted by a nontoxic photosensitizer while the surrounding healthy tissue is relatively unaffected.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is gradually becoming an alternative method in the treatment of several diseases. Here, we investigated the role of oxygen in photodynamically treated cervical cancer cells (HeLa). The effect of PDT on HeLa cells was assessed by exposing cultured cells to disulphonated zinc phthalocyanine (ZnPcS) and tetrasulphonated zinc tetraphenylporphyrin (ZnTPPS).
View Article and Find Full Text PDFWe recently developed a new light source that allows for the continuous monitoring of light-induced changes using common spectrophotometric devices adapted for microplate analyses. This source was designed primarily to induce photodynamic processes in cell models. Modern light components, such as LED chips, were used to improve the irradiance homogeneity.
View Article and Find Full Text PDFCent Eur J Public Health
September 2016
Aim: Natural or artificial substances have become an inseparable part of our lives. It is questionable whether adequate testing has been performed in order to ensure these substances do not pose a serious health risk. The principal aim of our research was to clarify the potential risk of adding essential oils to food, beverages and cosmetic products.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is based on the tumor-selective accumulation of photosensitizer followed by irradiation with light of an appropriate wavelength. After irradiation and in the presence of oxygen, photosensitizer induces cellular damage. The aim of this study was to evaluate effects of two photosensitizers TMPyP and ClAlPcS2 on cell lines to obtain better insight into their mechanisms of action.
View Article and Find Full Text PDFBackground: Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen.
View Article and Find Full Text PDFPhotodynamic therapy is usually used against malignant and non-malignant tumors. Nowadays, due to resistance of bacterial strains, we are looking for a new antimicrobial strategy to destroy bacteria with minimal invasive consequences. The worldwide increase in antibiotic resistance among different classes of gram-positive and gram-negative bacteria has led to the search for alternative anti-microbial therapies such as antimicrobial PDT (aPDT).
View Article and Find Full Text PDFBiomed Pap Med Fac Univ Palacky Olomouc Czech Repub
June 2014
Background: Bacterial resistance to antibiotics is a constantly growing challenge. Photodynamic therapy (PDT) offers a new approach to the treatment of bacterial and viral diseases. The aim of this study was to compare the efficacy of photosensitizers used in PDT applied to cell lines and bacterial strains.
View Article and Find Full Text PDFBiomed Pap Med Fac Univ Palacky Olomouc Czech Repub
June 2012
Background: Photodynamic therapy (PDT) is a new modality in cancer treatment. It is based on the tumour-selective accumulation of a photosensitizer followed by irradiation with light of a specific wavelength. PDT is becoming widely accepted owing to its relative specificity and selectivity along with absence of the harmful side-effects of chemo and radiotherapy.
View Article and Find Full Text PDFToxicol In Vitro
September 2011
Photodynamic therapy (PDT) is an alternative method of tumour treatment. It is based on a photochemical reaction of a photosensitizer, irradiation, and O(2) which converts to cytotoxic (1)O(2) and other forms of reactive oxygen species (ROS). The comet assay (also called single-cell gel electrophoresis, SCGE) is a sensitive, simple and quantitative technique for detection of DNA damage.
View Article and Find Full Text PDFWe studied the morphology of the A549 cell line (human lung carcinoma cells) before and after photodynamic therapy (PDT) by atomic force microscopy. PDT was induced by an efficient light-emitting diode source with total light dose of 15 J cm(-2) in the presence of the sensitizer zinc-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrine. In the presence of molecular oxygen, light activation of the photosensitizer, which accumulates in cancer cells, leads to the local production of reactive oxygen species (ROS).
View Article and Find Full Text PDFToxicol In Vitro
February 2010
Photodynamic therapy (PDT) has been approved as proper and effective kind of treatment for certain types of cancer and non-malignant diseases. We tested photodynamic effects on G361 human melanoma cells sensitized by zinc-5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrine (ZnTPPS(4)), chloraluminium phtalocyanine disulfonate (ClAlPcS(2)) and 5-aminolevulinic acid (ALA). In particular, we examined the PDT efficiency depending on applied light dose (0.
View Article and Find Full Text PDFPhotodynamic therapy is a modality of treatment for tumors. The photochemical interactions of sensitizer, light and molecular oxygen produce reactive oxygen species (ROS) such as singlet oxygen, peroxide, hydroxyl radical and superoxide ion. The tumor is destroyed either by the formation of highly reactive singlet oxygen (type II mechanism) or by the formation of radical products (type 1 mechanism) generated in an energy transfer reaction.
View Article and Find Full Text PDFThe objectives of this study was to investigate the production of reactive oxygen species (ROS) after photodynamic therapy (PDT) in vitro. We examined second generation sensitizers, porphyrines (TPPS4, ZnTPPS4 and PdTPPS4) and compared their effectivity on ROS generation in G361 cell line. Used porphyrines are very efficient water-soluble aromatic dyes with potential to use in photomedicine and have a high propensity to accumulate in the membranes of intracellular organelles like lysosomes and mitochondria.
View Article and Find Full Text PDF