During 2014-2015, 270 fecal samples were collected from non-diarrheic, captive and wild African green monkeys (AGMs) on the island of St. Kitts, Caribbean region. By RNA-PAGE, picobirnaviruses (PBVs) were detected in sixteen captive AGMs.
View Article and Find Full Text PDFThe wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs.
View Article and Find Full Text PDFHigher efficacy and safety of nano gold therapeutics require examination of cellular responses to gold nanoparticles (AuNPs). In this work we compared cellular uptake, cytotoxicity and RNA expression patterns induced in Caco-2 cells exposed to AuNP (5 and 30nm). Cellular internalization was dose and time-dependent for both AuNPs.
View Article and Find Full Text PDFEarly events in the cellular response to DNA damage, such as double strand breaks, rely on lesion recognition and activation of proteins involved in maintenance of genomic stability. One important component of this process is the phosphorylation of the histone variant H2AX. To investigate factors explaining the variation in carcinogenic potency between different categories of polycyclic aromatic hydrocarbons (PAHs), we have studied the phosphorylation of H2AX (H2AXgamma).
View Article and Find Full Text PDFMicroarray-based screening technologies have revealed a larger than expected diversity of gene expression profiles for many cells, tissues, and organisms. The complexity of RNA species, defined by their molecular structure, represents a major new development in biology. RNA not only carries genetic information in the form of templates and components of the translational machinery for protein synthesis but also directly regulates gene expression as exemplified by micro-RNAs (miRNAs).
View Article and Find Full Text PDFDifferences in biological responses to exposure to hazardous airborne substances between children and adults have been reported, suggesting children to be more susceptible. Aim of this study was to improve our understanding of differences in susceptibility in cancer risk associated with air pollution by comparing genome-wide gene expression profiles in peripheral blood of children and their parents. Gene expression analysis was performed in blood from children and parents living in two different regions in the Czech Republic with different levels of air pollution.
View Article and Find Full Text PDFThe Teplice area in the Czech Republic is a mining district where elevated levels of air pollution including airborne carcinogens, have been demonstrated, especially during winter time. This environmental exposure can impact human health; in particular children may be more vulnerable. To study the impact of air pollution in children at the transcriptional level, peripheral blood cells were subjected to whole genome response analysis, in order to identify significantly modulated biological pathways and processes as a result of exposure.
View Article and Find Full Text PDFHuman A549 lung epithelial cells were challenged with 18O-labeled hydrogen peroxide ([18O]-H2O2), the total RNA and DNA extracted in parallel, and analyzed for 18O-labeled 8-oxo-7,8-dihydroguanosine ([18O]-8-oxoGuo) and 8-oxo-7,8-dihydro-2'-deoxyguanosine ([18O]-8-oxodGuo) respectively, using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-MS/MS). [18O]-H2O2 exposure resulted in dose-response formation of both [18O]-8-oxoGuo and [18O]-8-oxodGuo and 18O-labeling of guanine in RNA was 14-25 times more common than in DNA. Kinetics of formation and subsequent removal of oxidized nucleic acids adducts were also monitored up to 24 h.
View Article and Find Full Text PDFIn cell lines harbouring inducible adenovirus E1A genes, the cytotoxicity of wild type E1A was manifested by poor and subsiding expression of the E1A protein during prolonged induction. In contrast, cells expressing E1A deleted in the C-terminal binding protein (CtBP)-interaction domain (E1ADeltaCID) demonstrated high levels of expression for extended time. Microarray analyses of host cell gene expression demonstrated that approximately 70% of the regulated genes were increased upon E1A induction and that the majority of E1A-regulated genes were similarly regulated by wild type E1A and E1ADeltaCID.
View Article and Find Full Text PDFArch Biochem Biophys
October 2002
During situations of oxidative stress phenotypic adaptation to altered redox state is achieved by changes in expression of selected genes. The mechanisms regulating this may involve reversible S-glutathionylation of cellular proteins. In this study we compared and contrasted changes in gene expression patterns in human type II lung epithelial A549 cells and human endothelial ECV304 cells in correlation to glutathione oxidation and the formation of glutathione-protein mixed disulphides, after exposure to subtoxic levels of hydrogen peroxide, formed in the medium by addition of glucose oxidase, or the thiol oxidant diamide.
View Article and Find Full Text PDFTo construct recombinant adenoviruses expressing biologically active proteins may be impossible, or result in a significant reduction in virus yield, if the protein expressed has an inhibitory effect on virus replication or cellular growth. To overcome this problem, we previously designed adenovirus vectors expressing foreign proteins from inducible promoters. However, during our work with a replication-deficient virus expressing the ASF/SF2 splicing factor from a progesterone antagonist-inducible gene cassette, we discovered that ASF/SF2 was expressed at a significant level in the 293 producer cell line, even in the absence of inducer.
View Article and Find Full Text PDFThe C-terminal binding protein (CtBP) acts as a transcriptional corepressor upon recruitment to transcriptional regulators. In contrast, interaction between CtBP and the adenovirus E1A protein is required for efficient activation of E1A-responsive genes, suggesting that E1A might block CtBP-mediated repression. Recruitment of CtBP to a promoter, either as a Gal4CtBP fusion or through an interaction with a Gal4 fusion protein expressing the CtBP interacting domain (CID) of E1A, resulted in transcriptional repression.
View Article and Find Full Text PDF