Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs.
View Article and Find Full Text PDFSpermatogenesis is a complicated course of several rigorous restrained steps that spermatogonial stem cells undergo to develop into highly specialized spermatozoa; however, specific genes and signal pathways, which regulate the amplification, differentiation and maturation of these cells, remain unclear. We performed bioinformatics analyses to investigate the dynamic changes of the gene expression patterns at three time points in the course of the first wave of rat spermatogenesis. Differently expressed genes (DEGs) were identified, and the features of DEGs were further analyzed with GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) and Short Time-series Expression Miner (STEM).
View Article and Find Full Text PDFMaternal parity is an important physiological factor influencing beef cow reproductive performance. However, there are few studies on the influence of different calving periods on early growth and postpartum diseases. Here, we conducted blood transcriptomic analysis on cows of different parities for gene discovery.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
September 2021