Publications by authors named "Baiyao Xu"

Tendon regeneration and healing requires tenocytes to move to the repair site followed by proliferation and synthesis of the extracellular matrix. A novel synthetic growth factor, mechano-growth factor (MGF), has been discovered to have positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are a kind of nanomaterials which have been shown a promising application for biomedicine. There are a lot of studies to use CNTs to induce the differentiation of mesenchymal stem cells (MSCs). However, the cellular behavior of MSCs on the top layer of CNT array was still not well understood.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs, also broadly known as bone marrow-derived mesenchymal stem cells) are multipotent stem cells that have a self-renewal capacity and multilineage differentiation potential. Mechanical stretching plays a vital role in regulating the proliferation and differentiation of BMSCs. However, little is known about the effects of cyclic stretching on BMSC migration and invasion.

View Article and Find Full Text PDF

Mesoporous silica-coated Au nanorod (AuNR@SiO2) is one of the most important appealing nanomaterials for cancer therapy. The multifunctions of chemotherapy, photothermal therapy, and imaging of AuNR@SiO2 make it very useful for cancer therapy. In this study, AuNR@SiO2 was functionalized to deliver hydrophobic antitumor drug and to heat the targeted tumor with the energy of near-infrared (NIR).

View Article and Find Full Text PDF

Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis.

View Article and Find Full Text PDF

Adipogenesis is important to health and is thought occurring in the two stages of mesenchymal stem cell commitment to a preadipocyte fate and terminal differentiation of the preadipocyte. However, the mechanism of adipogenesis is still not clear. In this study, the roles of p38, extracellular regulated protein kinases 1/2 (ERK1/2), focal adhesion kinase (FAK), RhoA/ROCK, and cytoskeleton in both of the two stages of adipogenesis were assayed.

View Article and Find Full Text PDF

We examined optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation by applying a wide range of cyclic mechanical stimuli. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to three types of cyclic elongation of 5%, 10%, or 15% at a cyclic frequency of 1 Hz for 24 h or 48 h, and differentiation into tenocytes was assessed by two methods: real-time polymerase chain reaction determination of gene expression levels and western blotting analysis of protein expression levels. The gene expression levels of the differentiation markers type I collagen (Col I), type III collagen (Col III), tenascin-C (Tnc), and scleraxis (Scx), all of which are constituents of tendon tissue, were increased when cells were exposed to 10% stretching stimulation.

View Article and Find Full Text PDF

Human bone marrow mesenchymal stem cells (hMSCs) have the potential to differentiate into tendon/ligament-like lineages when they are subjected to mechanical stretching. However, the means through which mechanical stretch regulates the tenogenic differentiation of hMSCs remains unclear. This study examined the role of RhoA/ROCK, cytoskeletal organization, and focal adhesion kinase (FAK) in mechanical stretch-induced tenogenic differentiation characterized by the up-regulation of tendon-related marker gene expression.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is a focal adhesion-associated protein kinase involved in cell adhesion and spreading. It is recruited as a participant in focal adhesion dynamics between cells and has a role in cell motility, differentiation, and survival. The role of FAK in the differentiation of human mesenchymal stem cells (hMSCs), however, is not well understood, particularly in terms of tenogenic differentiation.

View Article and Find Full Text PDF

It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mRNA expression of several key genes modulating tendon/ligament genesis.

View Article and Find Full Text PDF

Recent evidences have suggested that humoral factors released from the appropriate co-cultured cells influenced the expansion and differentiation of mesenchymal stem cells (MSCs). However, little is known about the proliferation and differentiation of MSCs subjected to co-culture condition with tenocytes. In this study, we aimed to establish a co-culture system of MSCs and tenocytes and investigate the proliferation and tendon/ligament related gene expression of MSCs.

View Article and Find Full Text PDF