Publications by authors named "Baixia Hao"

Close homolog of L1 (CHL1) is a cell adhesion molecule of the immunoglobulin superfamily. It promotes neuritogenesis and survival of neurons in vitro. In vivo, CHL1 promotes nervous system development, regeneration after trauma, and synaptic function and plasticity.

View Article and Find Full Text PDF

Aims: MicroRNAs (miRNAs) are crucial for the post-transcriptional control of protein-encoding genes and together with transcription factors (TFs) regulate gene expression; however, the regulatory activities of miRNAs during cardiac development are only partially understood. In this study, we tested the hypothesis that integrative computational approaches could identify miRNAs that experimentally could be shown to regulate cardiomyogenesis.

Methods And Results: We integrated expression profiles with bioinformatics analyses of miRNA and TF regulatory programs to identify candidate miRNAs involved with cardiac development.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca(2+) influx in oxidative stress-mediated autophagy regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Nitric oxide (NO) enhances the production of styrylpyrone polyphenols in the fungus Inonotus obliquus by boosting the activity of key enzymes like phenylalanine ammonia lyase (PAL) and styrylpyrone synthase (SPS).
  • A temporary surge of NO not only activates these enzymes but also leads to their S-nitrosylation, which reduces their activity to prevent excessive polyphenol production.
  • The thioredoxin system, particularly thioredoxin reductase (TrxR) and thioredoxin-like proteins (TrxLs), plays a critical role in managing the levels of S-nitrosylated proteins, helping maintain a balance in the synthesis
View Article and Find Full Text PDF

Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways.

View Article and Find Full Text PDF

CD38 is a multifunctional membrane enzyme and the main mammalian ADP-ribosyl cyclase, which catalyzes the synthesis and hydrolysis of cADPR, a potent endogenous Ca(2+) mobilizing messenger. Here, we explored the role of CD38 in the neural differentiation of mouse embryonic stem cells (ESCs). We found that the expression of CD38 was decreased during the differentiation of mouse ESCs initiated by adherent monoculture.

View Article and Find Full Text PDF

Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g.

View Article and Find Full Text PDF

Nicotinic adenine acid dinucleotide phosphate (NAADP) is one of the most potent endogenous Ca(2+) mobilizing messengers. NAADP mobilizes Ca(2+) from an acidic lysosome-related store, which can be subsequently amplified into global Ca(2+) waves by calcium-induced calcium release (CICR) from ER/SR via Ins(1,4,5)P 3 receptors or ryanodine receptors. A body of evidence indicates that 2 pore channel 2 (TPC2), a new member of the superfamily of voltage-gated ion channels containing 12 putative transmembrane segments, is the long sought after NAADP receptor.

View Article and Find Full Text PDF

Store-operated Ca(2+) entry (SOCE) is an important Ca(2+) influx pathway in non-excitable cells. STIM1, an ER Ca(2+) sensor, and Orai1, a plasma membrane Ca(2+) selective channel, are the two essential components of the Ca(2+) release activated channel (CRAC) responsible for SOCE activity. Here we explored the role of STIM1 and Orai1 in neural differentiation of mouse embryonic stem (ES) cells.

View Article and Find Full Text PDF

Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes.

View Article and Find Full Text PDF

Cyclic adenosine diphosphate ribose is an endogenous Ca(2+) mobilizer involved in diverse cellular processes. A cell membrane-permeable cyclic adenosine diphosphate ribose analogue, cyclic inosine diphosphoribose ether (cIDPRE), can induce Ca(2+) increase in intact human Jurkat T-lymphocytes. Here we synthesized a coumarin-caged analogue of cIDPRE (Co-i-cIDPRE), aiming to have a precisely temporal and spatial control of bioactive cIDPRE release inside the cell using UV uncaging.

View Article and Find Full Text PDF

Intracellular pH (pHi) and Ca(2+) regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi.

View Article and Find Full Text PDF