Publications by authors named "Baiwei Wang"

Breast cancer (BC) is the most commonly diagnosed malignancy in women around the world. Accumulating evidence suggests that transient receptor potential (TRP) channels play a significant role in tumor progression and immune cell infiltration. Hence, we conducted the study to investigate the correlation between TRP-associated lncRNAs and the prognosis of breast carcinoma.

View Article and Find Full Text PDF

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (InSe), quasi-van der Waals (CsBiNbO) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity.

View Article and Find Full Text PDF

Optical transmission and reflection spectra in combination with ellipsometry and transport measurements on epitaxial rocksalt structure TiMgN(001) layers with 0.00 ≤ ≤ 0.49 are employed to explore their potential as refractory infrared plasmonic materials.

View Article and Find Full Text PDF

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral.

View Article and Find Full Text PDF

The reconfigurability of the electrical heterostructure featured with external variables, such as temperature, voltage, and strain, enabled electronic/optical phase transition in functional layers has great potential for future photonics, computing, and adaptive circuits. VO has been regarded as an archetypal phase transition building block with superior metal-insulator transition characteristics. However, the reconfigurable VO-based heterostructure and the associated devices are rare due to the fundamental challenge in integrating high-quality VO in technologically important substrates.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Crystallographic dislocation has been well-known to be one of the major causes responsible for the unfavorable carrier dynamics in conventional semiconductor devices. Halide perovskite has exhibited promising applications in optoelectronic devices. However, how dislocation impacts its carrier dynamics in the 'defects-tolerant' halide perovskite is largely unknown.

View Article and Find Full Text PDF

Lithium (Li) metal electrodes are not deployable in rechargeable batteries because electrochemical plating and stripping invariably leads to growth of dendrites that reduce coulombic efficiency and eventually short the battery. It is generally accepted that the dendrite problem is exacerbated at high current densities. Here, we report a regime for dendrite evolution in which the reverse is true.

View Article and Find Full Text PDF