The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics.
View Article and Find Full Text PDFsynthesizes the intracellular metalloprotease protealysin. This work was aimed at searching for bacterial substrates of protealysin among the proteins responsible for replication and cell division. We have shown that protealysin unlimitedly cleaves the SOS response protein RecA.
View Article and Find Full Text PDFRecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of () RecA-ssDNA filaments by RecX () within the framework of distinct conformational states of RecA-ssDNA filament.
View Article and Find Full Text PDFComput Struct Biotechnol J
January 2021
Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking.
View Article and Find Full Text PDF(Dr) has one of the most robust DNA repair systems, which is capable of withstanding extreme doses of ionizing radiation and other sources of DNA damage. DrRecA, a central enzyme of recombinational DNA repair, is essential for extreme radioresistance. In the presence of ATP, DrRecA forms nucleoprotein filaments on DNA, similar to other bacterial RecA and eukaryotic DNA strand exchange proteins.
View Article and Find Full Text PDFThe RecA protein plays a key role in bacterial homologous recombination (HR) and acts through assembly of long helical filaments around single-stranded DNA in the presence of ATP. Large-scale conformational changes induced by ATP hydrolysis result in transitions between stretched and compressed forms of the filament. Here, using a single-molecule approach, we show that compressed RecA nucleoprotein filaments can exist in two distinct interconvertible states depending on the presence of ADP in the monomer-monomer interface.
View Article and Find Full Text PDFA large variety of short biologically active peptides possesses antioxidant, antibacterial, antitumour, anti-ageing and anti-inflammatory activity, involved in the regulation of neuro-immuno-endocrine system functions, cell apoptosis, proliferation and differentiation. Therefore, the mechanisms of their biological activity are attracting increasing attention not only in modern molecular biology, biochemistry and biophysics, but also in pharmacology and medicine. In this work, we systematically analysed the ability of dipeptides (all possible combinations of the 20 standard amino acids) to bind all possible combinations of tetra-nucleotides in the central part of dsDNA in the classic B-form using molecular docking and molecular dynamics.
View Article and Find Full Text PDFThe RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices.
View Article and Find Full Text PDFA plasmid carrying the Deinococcus radiodurans recXgene under the control of a lactose promoter decreases the Escherichia coli cell resistance to UV irradiation and γ irradiation and also influences the conjugational recombination process. The D. radiodurans.
View Article and Find Full Text PDFThe RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repair and the potentially deleterious consequences of RecA functionality. A RecA variant, RecA D112R, promotes conjugational recombination at substantially enhanced levels.
View Article and Find Full Text PDFDeinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments.
View Article and Find Full Text PDFUsing molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA.
View Article and Find Full Text PDFThe RecA protein is a major enzyme of homologous recombination in bacterial cell. Forming a right-handed helical filament on ssDNA, it provides a homology search between two DNA molecules and homologous strand exchange. The RecA protein not only defends the cell from exposure to ionizing radiation and UV-irradiation, but also ensures the recombination process in the course of normal cell growth.
View Article and Find Full Text PDFIt is known that RecX is a negative regulator of RecA protein. We found that the mutant RecA D112R protein exhibits increased resistance to RecX protein comparatively to wild-type RecA protein in vitro and in vivo. Using molecular modeling we showed, that amino acid located in position 112 can not approach RecX closer than 25-28 angstroms.
View Article and Find Full Text PDFThe wild-type Escherichia coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to sixfold.
View Article and Find Full Text PDFThe RecX protein of Escherichia coli inhibits the extension of RecA protein filaments on DNA, presumably by binding to and blocking the growing filament end. The direct binding of RecX protein to single-stranded DNA is weak, and previous reports suggested that direct binding to DNA did not explain the effects of RecX. We now demonstrate that elevated concentrations of SSB greatly moderate the effects of RecX protein.
View Article and Find Full Text PDFRecAX53 is a chimeric variant of the Escherichia coli RecA protein (RecAEc) that contains a part of the central domain of Pseudomonas aeruginosa RecA (RecAPa), encompassing a region that differs from RecAEc at 12 amino acid positions. Like RecAPa, this chimera exhibits hyperrecombination activity in E. coli cells, increasing the frequency of recombination exchanges per DNA unit length (FRE).
View Article and Find Full Text PDFDNA polymerase zeta (Polzeta) participates in translesion DNA synthesis and is involved in the generation of the majority of mutations induced by DNA damage. The mechanisms that license access of Polzeta to the primer terminus and regulate the extent of its participation in genome replication are poorly understood. The Polzeta-dependent damage-induced mutagenesis requires monoubiquitination of proliferating cell nuclear antigen (PCNA) that is triggered by exposure to mutagens.
View Article and Find Full Text PDFIn Escherichia coli, a relatively low frequency of recombination exchanges (FRE) is predetermined by the activity of RecA protein, as modulated by a complex regulatory program involving both autoregulation and other factors. The RecA protein of Pseudomonas aeruginosa (RecA(Pa)) exhibits a more robust recombinase activity than its E. coli counterpart (RecA(Ec)).
View Article and Find Full Text PDFAccording to one prominent model, each protomer in the activated nucleoprotein filament of homologous recombinase RecA possesses two DNA-binding sites. The primary site binds (1) single-stranded DNA (ssDNA) to form presynaptic complex and (2) the newly formed double-stranded (ds) DNA whereas the secondary site binds (1) dsDNA of a partner to initiate strand exchange and (2) the displaced ssDNA following the strand exchange. RecA protein from Pseudomonas aeruginosa (RecAPa) promotes in Escherichia coli hyper-recombination in an SOS-independent manner.
View Article and Find Full Text PDFThe filament structures of the self-polymers of RecA proteins from Escherichia coli and Pseudomonas aeruginosa, their complexes with ATPgammaS, phage M13 single-stranded DNA (ssDNA) and the tertiary complexes RecA::ATPgammaS::ssDNA were compared by small angle neutron scattering. A model was developed that allowed for an analytical solution for small angle scattering on a long helical filament, making it possible to obtain the helical pitch and the mean diameter of the protein filament from the scattering curves. The results suggest that the structure of the filaments formed by these two RecA proteins, and particularly their complexes with ATPgammaS, is conservative.
View Article and Find Full Text PDFThe method for separation of emission (EM) and excitation (EX) spectra of a protein into EM and EX spectra of its tyrosine (Tyr) and tryptophan (Trp) residues was described. The method was applied to analysis of Escherichia coli RecA protein and its complexes with Mg(2+), ATPgammaS or ADP, and single-stranded DNA (ssDNA). RecA consists of a C-terminal domain containing two Trp and two Tyr residues, a major domain with five Tyr residues, and an N-terminal domain without these residues (R.
View Article and Find Full Text PDFThe radA gene predicted to be responsible for homologous recombination in a hyperthermophilic archaeon, Desulfurococcus amylolyticus, was cloned, sequenced, and overexpressed in Escherichia coli cells. The deduced amino acid sequence of the gene product, RadA, was more similar to the human Rad51 protein (65% homology) than to the E. coli RecA protein (35%).
View Article and Find Full Text PDF