Through the modulation of its surround, an identical visual stimulus can be perceived as more or less salient, allowing it to either stand out or seamlessly integrate with the rest of the visual scene. Gamma rhythms are associated with processing stimulus features across extensive areas of the visual field. Consistent with this concept, the magnitude of visually induced gamma rhythm depends on how well stimulus features aligned both within and outside the classical receptive field (CRF) at the recording site.
View Article and Find Full Text PDFGlaucoma is a leading cause of irreversible blindness worldwide, and previous studies have shown that, in addition to affecting the eyes, it also causes abnormalities in the brain. However, it is not yet clear how the primary visual cortex (V1) is altered in glaucoma. This study used DBA/2J mice as a model for spontaneous secondary glaucoma.
View Article and Find Full Text PDFRecent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent.
View Article and Find Full Text PDF