Vegetable oil is an important part of the human diet and has multiple industrial uses. The rapid increase in vegetable oil consumption has necessitated the development of viable methods for optimizing the oil content of plants. The key genes regulating the biosynthesis of maize grain oil remain mostly uncharacterized.
View Article and Find Full Text PDFThe novel ZmR1 allele for maize anthocyanin synthesis was identified, and the biological function and regulatory molecular mechanisms of three ZmR1 alleles were unveiled. Anthocyanins in maize are valuable to human health. The R1 gene family is one of the important regulatory genes for the tissue-specific distribution of anthocyanins.
View Article and Find Full Text PDFSalt stress is a major devastating abiotic factor that affects the yield and quality of maize. However, knowledge of the molecular mechanisms of the responses to salt stress in maize is limited. To elucidate the genetic basis of salt tolerance traits, a genome-wide association study was performed on 348 maize inbred lines under normal and salt stress conditions using 557 894 single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFWaxy maize has many excellent characteristics in terms of its nutritional and economic value. In recent decades, the waxy maize germplasm has increased dramatically as a result of different selection methods. We collected 200 waxy maize inbred accessions from different origins to study their genetic diversity and phylogenetic relationships, and to identify new waxy mutations.
View Article and Find Full Text PDF