Publications by authors named "Bairui Zeng"

Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how chiral tetrapeptide (Ac-FFFK-OH, or FFFK) supramolecular polymers can modulate the immune response, specifically targeting macrophage polarization to enhance tissue repair and regeneration.
  • - Findings reveal that chiral FFFK nanofibers promote M2 macrophage polarization by activating the Src-STAT6 signaling pathway, which is critical for restoring tissue homeostasis after injury.
  • - The research highlights that L-chirality of the FFFK peptide is more effective than D-chirality in maintaining M2 polarization, suggesting a novel strategy using chiral peptides to aid recovery in damaged tissues.
View Article and Find Full Text PDF

Background: Currently, oblique placement of long implants or the use of short implants to circumvent the maxillary sinus area and provide support for fixed prostheses are viable alternatives. The purpose of this study was to compare these two treatment concepts and ascertain which one exhibits superior biomechanical characteristics.

Methods: Two different treatment concept models were constructed.

View Article and Find Full Text PDF

Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility.

View Article and Find Full Text PDF

To effectively treat diabetic wounds, the development of versatile medical dressings that can long-term regulate blood glucose and highly effective anti-oxidative stress, antibacterial and anti-inflammatory are critical. Here, an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) was developed via the dynamic Schiff base reaction between the amino groups on quaternized chitosan (QCS) and the aldehyde groups on benzaldehyde-terminated F108 (F108-CHO) micelles. CORM-401 (an oxidant-sensitive CO-releasing molecules) was encapsulated in the hydrophobic core of F108-CHO micelles and insulin was loaded in the three-dimensional network structure of ICOQF.

View Article and Find Full Text PDF

Development of versatile medical dressing with good immediate and long-lasting antibacterial, hygroscopic and moisturizing abilities is of great significance for management of chronic wounds. Cotton gauze (CG) can protect wounds and promote scabbing, but can cause wound dehydration and loss of biologically active substances, thereby greatly delays wound healing. Herein, a bi-functional CG dressing (CPCG) was developed by chemically grafting polyhexamethylene guanidine (PHMG) and physically adsorbing chitosan (CS) onto the CG surface.

View Article and Find Full Text PDF

Although antiretroviral therapy has helped to improve the lives of individuals infected with human immunodeficiency virus 1 (HIV-1), these patients are often still afflicted with HIV-1-associated neurocognitive disorders, which can lead to neurocognitive impairment and even dementia, and continue to hamper their quality of life. Methamphetamine abuse in HIV-1 patients poses a potential risk for HIV-associated neurocognitive disorders, because methamphetamine and HIV-1 proteins such as transactivator of transcription can synergistically damage the blood-brain barrier (BBB). In this study, we aimed to examine the effects of methamphetamine and HIV-1 Tat protein on the blood-brain barrier function and to determine whether ginsenoside Rb1 (GsRb1) plays a role in protecting the BBB.

View Article and Find Full Text PDF