Background: Currently, oblique placement of long implants or the use of short implants to circumvent the maxillary sinus area and provide support for fixed prostheses are viable alternatives. The purpose of this study was to compare these two treatment concepts and ascertain which one exhibits superior biomechanical characteristics.
Methods: Two different treatment concept models were constructed.
Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility.
View Article and Find Full Text PDFTo effectively treat diabetic wounds, the development of versatile medical dressings that can long-term regulate blood glucose and highly effective anti-oxidative stress, antibacterial and anti-inflammatory are critical. Here, an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) was developed via the dynamic Schiff base reaction between the amino groups on quaternized chitosan (QCS) and the aldehyde groups on benzaldehyde-terminated F108 (F108-CHO) micelles. CORM-401 (an oxidant-sensitive CO-releasing molecules) was encapsulated in the hydrophobic core of F108-CHO micelles and insulin was loaded in the three-dimensional network structure of ICOQF.
View Article and Find Full Text PDFDevelopment of versatile medical dressing with good immediate and long-lasting antibacterial, hygroscopic and moisturizing abilities is of great significance for management of chronic wounds. Cotton gauze (CG) can protect wounds and promote scabbing, but can cause wound dehydration and loss of biologically active substances, thereby greatly delays wound healing. Herein, a bi-functional CG dressing (CPCG) was developed by chemically grafting polyhexamethylene guanidine (PHMG) and physically adsorbing chitosan (CS) onto the CG surface.
View Article and Find Full Text PDFAlthough antiretroviral therapy has helped to improve the lives of individuals infected with human immunodeficiency virus 1 (HIV-1), these patients are often still afflicted with HIV-1-associated neurocognitive disorders, which can lead to neurocognitive impairment and even dementia, and continue to hamper their quality of life. Methamphetamine abuse in HIV-1 patients poses a potential risk for HIV-associated neurocognitive disorders, because methamphetamine and HIV-1 proteins such as transactivator of transcription can synergistically damage the blood-brain barrier (BBB). In this study, we aimed to examine the effects of methamphetamine and HIV-1 Tat protein on the blood-brain barrier function and to determine whether ginsenoside Rb1 (GsRb1) plays a role in protecting the BBB.
View Article and Find Full Text PDF