Macroclimate drives vegetation distributions, but fine-scale topographic variation can generate microclimate refugia for plant persistence in unsuitable areas. However, we lack quantitative descriptions of topography-driven microclimatic variation and how it shapes forest structure, diversity, and composition. We hypothesized that topographic variation and the presence of the forest overstory cause spatiotemporal microclimate variation affecting tree performance, causing forest structure, diversity, and composition to vary with topography and microclimate, and topography and the overstory to buffer microclimate.
View Article and Find Full Text PDFThe southern pine beetle, Dendroctonus frontalis Zimmermann is an important mortality agent of Pinus in the eastern United States of America where it commonly shares hosts with the black turpentine beetle, Dendroctonus terebrans (Olivier), which infrequently kills trees. Unlike D. frontalis, which must kill its hosts to become established in the bark and reproduce, D.
View Article and Find Full Text PDFClimate change is causing rapid shifts in the abiotic and biotic environmental conditions experienced by plant populations, but we lack generalizable frameworks for predicting the consequences for species. These changes may cause individuals to become poorly matched to their environments, potentially inducing shifts in the distributions of populations and altering species' habitat and geographic ranges. We present a trade-off-based framework for understanding and predicting whether plant species may undergo range shifts, based on ecological strategies defined by functional trait variation.
View Article and Find Full Text PDF