Publications by authors named "Bailbe D"

Background And Purpose: Glucocorticoids (GCs) are the main treatment for autoimmune and inflammatory disorders and are also used as immunosuppressive therapy for patients with organ transplantation. However, these treatments have several side effects, including metabolic disorders. Indeed, cortico-therapy may induce insulin resistance, glucose intolerance, disrupted insulin and glucagon secretion, excessive gluconeogenesis, leading to diabetes in susceptible individuals.

View Article and Find Full Text PDF

Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade.

View Article and Find Full Text PDF

The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors.

View Article and Find Full Text PDF

Type 2 diabetes is associated with an inflammatory phenotype in the pancreatic islets. We previously demonstrated that proinflammatory cytokines potently activate the tryptophan/kynurenine pathway (TKP) in INS-1 cells and in normal rat islets. Here we examined: (1) the TKP enzymes expression in the diabetic GK islets; (2) the TKP enzymes expression profiles in the GK islets before and after the onset of diabetes; (3) The glucose-stimulated insulin secretion (GSIS) in vitro in GK islets after KMO knockdown using specific morpholino-oligonucleotides against KMO or KMO blockade using the specific inhibitor Ro618048; (4) The glucose tolerance and GSIS after acute in vivo exposure to Ro618048 in GK rats.

View Article and Find Full Text PDF

Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in β-cells are not well understood.

View Article and Find Full Text PDF

Purinergic P2Y receptors, by binding adenosine triphosphate (ATP), are known for enhancing glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. However, the impact of these receptors in the actin dynamics and insulin granule exocytosis in these cells is not established, neither in normal nor in glucotoxic environment. In this study, we investigate the involvement of P2Y receptors on the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β cells exposed to normal or glucotoxic environment and their role in GSIS.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how a high-protein diet (HPD) in fathers affects the metabolic health of their offspring, specifically looking at male and female Wistar rats.
  • Female offspring showed no significant difference in insulin sensitivity or glucose tolerance regardless of the father's diet, while male offspring from HPD fathers exhibited better insulin sensitivity and differing insulin secretion responses.
  • The findings suggest that paternal nutrition can have lasting, sex-specific impacts on the metabolic health of offspring, emphasizing the need to consider father’s diet in discussions about developmental health.
View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood.

View Article and Find Full Text PDF

Besides the fetal period, the suckling period is a critical time window in determining long-term metabolic health. We undertook the present study to elucidate the impact of a diabetic suckling environment alone or associated with an in utero diabetic environment on beta cell mass development and the risk of diabetes in the offspring in the long term. To that end, we have compared two experimental settings.

View Article and Find Full Text PDF

Islet inflammation is associated with defective β cell function and mass in type 2 diabetes (T2D). Glycogen synthase kinase 3 (GSK3) has been identified as an important regulator of inflammation in different diseased conditions. However, the role of GSK3 in islet inflammation in the context of diabetes remains unexplored.

View Article and Find Full Text PDF

Actin dynamics in pancreatic β-cells is involved in insulin exocytosis but the molecular mechanisms of this dynamics and its role in biphasic insulin secretion in pancreatic β-cells is largely unknown. Moreover, the impact of a glucotoxic environment on the sub-cortical actin network dynamics is poorly studied. In this study, we investigate the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β-cells submitted to a normal or glucotoxic environment.

View Article and Find Full Text PDF

The tryptophan/kynurenine pathway (TKP) is the main route of tryptophan degradation and generates several neuroactive and immunomodulatory metabolites. Experimental and clinical data have clearly established that besides fat, muscle and liver, pancreatic islet tissue itself is a site of inflammation during obesity and type 2 diabetes. Therefore it is conceivable that pancreatic islet exposure to increased levels of cytokines may induce upregulation of islet kynurenine metabolism in a way resembling that seen in the brain in many neurodegenerative disorders.

View Article and Find Full Text PDF

A substantial body of evidence suggests that an abnormal intra-uterine milieu elicited by maternal metabolic disturbances as diverse as malnutrition, placental insufficiency, diabetes and obesity may be able to programme susceptibility of the foetus to later develop chronic degenerative diseases such as obesity, hypertension, cardiovascular diseases and type 2 diabetes (T2D). As insulin-producing cells have been placed centre stage in the development of T2D, this review examines developmental programming of the beta-cell mass (BCM) in various rodent models of maternal protein restriction, calorie restriction, overnutrition and diabetes. The main message is that whatever the initial maternal insult (F0 generation) and whether alone or in combination, it gives rise to the same programmed BCM outcome in the daughter generation (F1).

View Article and Find Full Text PDF

The aim of the present study was to evaluate the potential antidiabetic effects of two-component drug Subetta and its components (release-active dilutions of antibodies to β -subunit insulin receptor (RAD of Abs to β -InsR) and to endothelial nitric oxide synthase (RAD of Abs to eNOS)) in Goto-Kakizaki (Paris colony) (GK/Par) diabetic rats. Subetta was administered orally for 28 days once daily (5 mL/kg) and compared to its two components (2.5 mL/kg), Rosiglitazone (5 mg/kg), and vehicle (5 mL water/kg).

View Article and Find Full Text PDF

Aims/hypothesis: We used the GK/Par rat, a spontaneous model of type 2 diabetes with early defective beta cell neogenesis, to determine whether the development of GK/Par offspring in a non-diabetic intrauterine/postnatal environment would prevent the alteration of fetal beta cell mass (BCM) and ultimately decrease the risk of diabetes later in adult life.

Methods: We used an embryo-transfer approach, with fertilised GK/Par ovocytes (oGK) being transferred into pregnant Wistar (W) or GK/Par females (pW and pGK). Offspring were phenotyped at fetal age E18.

View Article and Find Full Text PDF

Endocrine and exocrine insufficiencies are associated with serious diseases such as diabetes and pancreatitis, respectively. Pancreatic cells retain the capacity to regenerate in the context of cell deficiency. The remnant pancreas after pancreatectomy (Px) is a valuable target for testing the efficiency of pharmacological interventions to stimulate cell regeneration.

View Article and Find Full Text PDF

Aims: Hypothalamic mitochondrial reactive oxygen species (mROS)-mediated signaling has been recently shown to be involved in the regulation of energy homeostasis. However, the upstream signals that control this mechanism have not yet been determined. Here, we hypothesize that glucose-induced mitochondrial fission plays a significant role in mROS-dependent hypothalamic glucose sensing.

View Article and Find Full Text PDF

Serotonin and insulin are key regulators of homeostatic mechanisms in the hypothalamus. However, in type 2 diabetes, the hypothalamic responsiveness to serotonin is not clearly established. We used a diabetic model, the Goto Kakizaki (GK) rats, to explore insulin receptor expression, insulin and serotonin efficiency in the hypothalamus and liver by means of Akt phosphorylation.

View Article and Find Full Text PDF

cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic β-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets.

View Article and Find Full Text PDF

Pancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.

View Article and Find Full Text PDF

Diabetes mellitus is associated with increased risk for cardiovascular disorders, which are major causes of mortality in this disease. Hyperhomocysteinemia, defined by high plasma homocysteine levels, is an independent risk factor for the development of cardiovascular diseases. Type 2 diabetic patients have higher circulating homocysteine levels than healthy subjects and these levels are even higher in plasma of obese than nonobese diabetic patients.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect.

View Article and Find Full Text PDF

Background: Oxidative stress (OS), through excessive and/or chronic reactive oxygen species (ROS), is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes.

Methodology/principal Findings: Localization of OS markers was performed on whole pancreases.

View Article and Find Full Text PDF

Increasing evidence indicates that decreased functional beta-cell mass is the hallmark of type 2 diabetes (T2D) mellitus. Nowadays, the debate focuses on the possible mechanisms responsible for abnormal islet microenvironment, decreased beta-cell number, impaired beta-cell function, and their multifactorial aetiologies. This review is aimed to illustrate to what extend the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved be a valuable tool offering sufficient commonalities to study these aspects.

View Article and Find Full Text PDF