Publications by authors named "Baikie I"

Increasing the open-circuit voltage () is one of the key strategies for further improvement of the efficiency of perovskite solar cells. It requires fundamental understanding of the complex optoelectronic processes related to charge carrier generation, transport, extraction, and their loss mechanisms inside a device upon illumination. Herein, we report the important origin of losses in methylammonium lead iodide perovskite (MAPI)-based solar cells, which results from undesirable positive charge (hole) accumulation at the interface between the perovskite photoactive layer and the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer.

View Article and Find Full Text PDF

Most traditional techniques to recover latent fingermarks from metallic surfaces do not consider the metal surface properties and instead focus on the fingermark chemistry. The scanning Kelvin probe (SKP) technique is a non-contact, non-destructive method, used under ambient conditions, which can be utilised to recover latent prints from metallic surfaces and does not require any enhancement techniques or prevent subsequent forensic analysis. Where a fingermark ridge contacted the metal, the contact potential difference (CPD) contrast between the background surface and the fingermark contact area was 10-50mV.

View Article and Find Full Text PDF

The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials.

View Article and Find Full Text PDF

Objective. Acupuncture points are reportedly distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact used in traditional electrodermal methods have contributed to controversies over this claim.

View Article and Find Full Text PDF

The Kelvin probe measures surface electrical potential without making physical contact with the specimen. It relies on capacitive coupling between an oscillating metal tip that is normal to a specimen's surface. Kelvin probes have been increasingly used to study surface and electrical properties of metals and semiconductors and are capable of detecting material surface potentials with submillivolt resolution at a micrometer spatial scale.

View Article and Find Full Text PDF

Although ambient processing is the key to low-cost organic solar cell production, high-vacuum thermal evaporation of LiF is often a limiting step, motivating the exploration of solution processing of LiF as an alternative electrode interlayer. Submonolayer films are realized with the assistance of polymeric micelle reactors that enable LiF particle deposition with controlled nanoscale surface coverage. Scanning Kelvin probe reveals a work function tunable with nanoparticle coverage with higher values than that of bare indium tin oxide (ITO).

View Article and Find Full Text PDF