Publications by authors named "Baikai Zhang"

Non-noble bimetallic NiMo supported on zeolitic imidazolate framework-derived porous carbon (NiMo@FDC) catalyst for lignin depolymerization has been successfully developed. The synergism between Ni and Mo species in NiMo@FDC catalyst could promote the catalytic cleavage of C-O linkages in Kraft lignin. At a low reaction temperature of 240 °C and under 4 MPa H, the lignin liquefaction yield was 98.

View Article and Find Full Text PDF

Non-noble bimetallic nanoparticles anchored on Zeolitic Imidazolate Frameworks, bifunctional ReMo@ZNB catalyst, has been demonstrated to promote Kraft lignin depolymerization. In this study, the catalytic activities under different heat treatment conditions are ranked as follows: ReMo@ZNB-700 (Air) > ReMo@ZNB-500 (Air) > ReMo@ZNB-700 (N). Particularly, bimetallic ReMo nanocatalyst with Re/Mo atomic ratio of 1/3 shows superior performance.

View Article and Find Full Text PDF

The major challenge in preparing polymer nanocomposites is to prevent the agglomeration of inorganic nanoparticles (NPs). Here, with regenerated cellulose (RC) films as supporting medium, UV-shielding and transparent nanocomposite films with hydrophobicity were fabricated by in situ synthesis of CeO₂ NPs. Facilitated through the interaction between organic and inorganic components revealed by X-ray diffraction (XRD) and Fourier transformation infrared spectroscopy (FTIR) characterization, it was found that CeO₂ NPs were uniformly dispersed in and immobilized by a cellulose matrix.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNC) were carboxylated through an organic solvent free esterification method using l-malic acid (MA) to improve performance of transparent poly(methyl methacrylate) (PMMA) nanocomposites. A series of CNC carboxylated with a degree-of-substitution (DS) of 0, 0.035, and 0.

View Article and Find Full Text PDF