The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFMicrocystin-leucine arginine (MC-LR), a representative cyanobacterial toxin, poses an increasing and serious threat to aquatic ecosystems. Despite investigating its toxic effects in various organisms and cells, the toxicity to tissue regeneration and stem cells in vivo still needs to be explored. Planarians are ideal regeneration and toxicology research models and have profound implications in ecotoxicology evaluation.
View Article and Find Full Text PDFHeat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian.
View Article and Find Full Text PDFAutophagy is an intracellular degradation process and plays key roles in energy recycle and homeostasis maintenance during planarian regeneration. Although planarians provide an ideal model organism for studying autophagy in vivo, the molecular mechanism of planarian autophagy is still unknown. Here, we identify three autophagy-related (Atg) gene 1 homologs from Dugesia japonica and study their roles in planarian regeneration.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2020
Dugesia japonica, belonging to Platyhelminthes, plays an important role in the animal evolution and is well known for its extraordinary regenerative ability. Mitogen activated protein kinase (MAPK) pathway is an important cell signaling pathway that converts extracellular stimuli into a wide range of cellular responses. The MAP-extracellular signal-regulated kinase (MEK) is a main component of MAPK/ERK signaling, but there are few studies on mek gene in planarians.
View Article and Find Full Text PDFis an excellent animal model for studying the regeneration mechanism due to its characteristics of rapid regeneration and easy breeding. PacBio sequencing was performed on the intact planarians (In) and regenerating planarians of 1 day (1d), 3 days (3d), and 5 days (5d) after amputation. The aim of this study is to deeply profile the transcriptome of and to evaluate its regenerate changes.
View Article and Find Full Text PDFBackground/aims: Alzheimer's disease (AD) is characterized by two major hallmarks: the deposition and accumulation of β-amyloid (Aβ) peptide and hyperphosphorylated tau in intracellular neurofibrillary tangles. Sets of evidence show that leptin reduces Aβ production and tau phosphorylation. Herein, we investigated the signaling pathways activated by leptin, to extensively understand its mechanism.
View Article and Find Full Text PDFObjective: To screen and analyze key express sequence tags (ESTs) which were differentially displayed in every period of SD rats' primary hepatic carcinoma and reveal the molecular mechanism of carcinogenesis.
Methods: Using diethylnitrosamine (DENA) as a cancerigenic agent, animal models with different phases of primary hepatic cancer were constructed in SD rats. Rats were respectively sacrificed at d 14, d 28, d 56, d 77, d 105 and d 112 after the rats received DENA by gavage, then the livers were harvested.
Objective: Based on liver cancer model built in SD rats, the contents of trace elements (Cu, Fe, Zn, Ca and Mg), AFP, CEA, SF, TH and IGF-II in serum were measured at different stages to explore the molecular changes during the rat liver cancer development.
Methods: The SD rat liver cancer model was built by using diethylnitrosamine (DENA) as the mutagen. During 16 weeks of DENA gavage, blood samples were taken in the 14th, 28th, 56th, 77th, 105th and 112th days respectively after the first day of gavage with DENA, then the contents of five trace elements (Cu, Fe, Zn, Ca and Mg), T3, T4, IGF-II, AFP, CEA and SF in serum were determined.