Magnesium batteries have emerged as one of the considerable choices for next-generation batteries. Oxide compounds have attracted great attention as cathodes for magnesium batteries because of their high output voltages and ease of synthesis. However, a majority of the reported results are based on metastable nanoscale oxide materials.
View Article and Find Full Text PDFMagnesium-based batteries have garnered significant attention due to their high energy density, excellent intrinsic safety, and low cost. However, the application process has been hindered by the high Mg ions diffusion barrier in solid-state structures and solid-liquid interphase. To address this issue, a hybrid battery technology based on Mg anode and Fe-based Prussian Blue Analogue cathode doped with functional transition metal ions and N═O bonds is proposed.
View Article and Find Full Text PDFConstructing a three-dimensional (3D) skeleton with a sodiophilic-modified layer (SML) has been proven to be an effective strategy to alleviate excessive volumetric deformation and continuous dendrite growth for sodium (Na) metal anodes. However, the weak binding force and violent reaction between the SML and the 3D skeleton lead to numerous cracks/defects and even pulverization of the SML during repeated Na plating/stripping. Herein, a lithiation pathway is presented to construct a sodiophilic Li-Sn alloy layer onto a 3D copper mesh to strengthen the SML for stable Na metal anodes.
View Article and Find Full Text PDFRechargeable magnesium batteries (RMBs) have garnered significant attention for their potential in large-scale energy storage applications. However, the commercial development of RMBs has been severely hampered by the rapid failure of large-sized Mg metal anodes, especially under fast and deep cycling conditions. Herein, a concept proof involving a large-scale ion-reinforced phytic acid (PA) layer (100 cm × 7.
View Article and Find Full Text PDFRechargeable magnesium batteries (RMBs) have garnered significant attention due to their potential to provide high energy density, utilize earth-abundant raw materials, and employ metal anode safely. Currently, the lack of applicable cathode materials has become one of the bottleneck issues for fully exploiting the technological advantages of RMBs. Recent studies on Mg cathodes reveal divergent storage performance depending on the electrolyte formulation, posing interfacial issues as a previously overlooked challenge.
View Article and Find Full Text PDFRechargeable magnesium-ion batteries possess desirable characteristics in large-scale energy storage applications. However, severe polarization, sluggish kinetics and structural instability caused by high charge density Mg hinder the development of high-performance cathode materials. Herein, the anionic redox chemistry in VS is successfully activated by inducing cations reduction and introducing anionic vacancies via polyacrylonitrile (PAN) intercalation.
View Article and Find Full Text PDFZn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H O adsorption energy on the Zn metal anode.
View Article and Find Full Text PDFHigh-capacity Li-rich layered oxides (LLOs) suffer from severe structure degradation due to the utilization of hybrid anion- and cation-redox activity. The native post-cycled structure, composed of progressively densified defective spinel layer (DSL) and intrinsic cations mixing, is deemed as the hindrance of the rapid and reversible de/intercalation of Li . Herein, the artificial post-cycled structure consisting of artificial DSL and inner cations mixing is in situ constructed, which would act as a shield against the irreversible oxygen emission and undesirable transition metal migration by suppressing anion redox activity and modulating cation mixing.
View Article and Find Full Text PDFMagnesium-ion batteries (MIBs) have great potential in large-scale energy storage field with high capacity, excellent safety, and low cost. However, the strong solvation effect of Mg will lead to the formation of solvated ions in electrolytes with larger size and sluggish diffusion/reaction kinetics. Here, the concept of interfacial catalytic bond breaking is first introduced into the cathode design of MIBs by hybriding MoS quantum dots with VS (VS@MQDs) as the cathode.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) are promising alternatives for large-scale energy storage owing to the rich resource and cost effectiveness. However, there are limitations of suitable low-cost, high-rate cathode materials for fast charging and high-power delivery in grid systems. Herein, a biphasic tunnel/layered 0.
View Article and Find Full Text PDFThe commercialization pace of aqueous zinc batteries (AZBs) is seriously limited due to the uncontrolled dendrite growth and severe corrosion reaction of the zinc anode. Herein, a universal and extendable saturated fatty acid-zinc interfacial layer strategy for modulating the interfacial redox process of zinc toward ultrastable Zn metal anodes is proposed. The in situ complexing of saturated fatty acid-zinc interphases could construct an extremely thin zinc compound layer with continuously constructed zincophilic sites which kinetically regulates Zn nucleation and deposition behaviors.
View Article and Find Full Text PDFThe metallic sodium (Na) is characterized by high theoretical specific capacity, low electrode potential and abundant resources, and its advantages manifests itself as a promising candidate anode of sodium metal batteries (SMBs). However, the vaporization during the plating/stripping or uncontrolled growth of sodium dendrites in sodium metal anodes (SMAs) has posed major challenges to its practical applications. To address this issue, here, the SnO /Ti C T composite is rationally fabricated, in which sodiophilic SnO nanoparticles are in situ dispersed on the 2D Ti C T , providing the acceptor sites of Na that can control vaporization and dendrites.
View Article and Find Full Text PDFThe construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
With the advantages of low cost, high safety, and environmental friendliness, quasi-solid-state zinc-ion microbatteries (ZIMBs) have received widespread attention in the field of flexible wearable devices and on-chip integratable energy storage. However, hysteresis Zn-ion transport kinetics and inhomogeneous growth of the zinc anode result in the poor capacity reversibility and cycling stability. Herein, a quasi-solid-state planar zinc-ion cell was developed by employing a vertical graphene (VG) film as an effective conductive modification layer for both the cathode and anode.
View Article and Find Full Text PDFEngineering composite lithium (Li) metal within three-dimensional (3D) porous skeleton hosts is a feasible strategy to tackle issues of uncontrollable dendrite growth and enormous volume change on Li metal anodes. Nevertheless, the accumulative Li deposition on the top surface of the 3D skeleton remains a harsh challenge that still requires effort. Herein, we develop a rational design involving an enriched-sparse LiF gradient on a Cu foam facile magnetron sputtering to coordinate ionic and electronic conductivity.
View Article and Find Full Text PDFHeterointerface engineering with multiple electroactive and inactive supporting components is considered an efficient approach to enhance electrochemical performance for sodium-ion batteries (SIBs). Nevertheless, it is still a challenge to rationally design heterointerface engineering and understand the synergistic effect reaction mechanisms. In this paper, the two-phase heterointerface engineering (Sb S and FeS ) is well designed to incorporate into N-doped porous hollow carbon nanofibers (Sb-Fe-S@CNFs) by proper electrospinning design.
View Article and Find Full Text PDFThere are plenty of issues need to be solved before the practical application of Li- and Mn-rich cathodes, including the detrimental voltage decay and mediocre rate capability, etc. Element doping can effectively solve the above problems, but cause the loss of capacity. The introduction of appropriate defects can compensate the capacity loss; however, it will lead to structural mismatch and stress accumulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
Carbon-coated silicon micro- and nanostructures have been widely used as composite anodes for lithium-ion batteries combining the benefits of high theoretical capacity of Si and better conductivity of carbon. To optimize structures that allow the Si volume expansion without losing the electrical connection, a detailed carbon protection mechanism is desired. We fabricate a network of interconnected sandwich branches with a silicon thin film encapsulated between a porous 3-dimensional graphene foam and graphene drapes (so-called a graphene ensemble).
View Article and Find Full Text PDFDesigning and constructing bimetallic hierarchical structures is vital for the conversion-alloy reaction anode of sodium-ion batteries (SIBs). Particularly, the rationally designed hetero-interface engineering can offer fast diffusion kinetics in the interface, leading to the improved high-power surface pseudocapacitance and cycling stability for SIBs. Herein, the hierarchical zinc-tin sulfide nanocages (ZnS-NC/SnS ) are constructed through hydrothermal and sulfuration reactions.
View Article and Find Full Text PDFLi-rich layered oxides (LLOs) are promising cathodes for lithium-ion batteries because of their high energy density provided by anionic redox. Although great improvements have been achieved in electrochemical performance, little attention has been paid to the energy density stability during fast charging. Indeed, LLOs have severe capacity fading and voltage decay especially at a high state of charge (SOC), disabling the application of the frequently used constant-current-constant-voltage mode for fast charging.
View Article and Find Full Text PDFSpatial confinement is a desirable successful strategy to trap sulfur within its porous host and has been widely applied in lithium-sulfur (Li-S) batteries. However, physical confinement alone is currently not enough to reduce the lithium polysulfide (LiS, 4 ≤n≤ 8, LIPSs) shuttle effect with sluggish LIPS-dissolving kinetics. In this work, we have integrated spatial confinement with a polar catalyst, and designed a three-dimensional (3D) interconnected, Co decorated and N doped porous carbon nanofiber (Co/N-PCNF) network.
View Article and Find Full Text PDFThe corrosion of Li- and Mn-rich (LMR) electrode materials occurring at the solid-liquid interface will lead to extra electrolyte consumption and transition metal ions dissolution, causing rapid voltage decay, capacity fading, and detrimental structure transformation. Herein, a novel strategy is introduced to suppress this corrosion by designing an Na-doped LMR (LiNiCoMnO) with abundant stacking faults, using sodium dodecyl sulfate as surfactant to ensure the uniform distribution of Na in deep grain lattices-not just surface-gathering or partially coated. The defective structure and deep distribution of Na are verified by Raman spectrum and high-resolution transmission electron microscopy of the as-prepared electrodes before and after 200 cycles.
View Article and Find Full Text PDFGenerally, the practical capacity of an electrode should include the weight of non-active components such as current collector, polymer binder, and conductive additives, which were as high as 70 wt% in current reported works, seriously limiting the practical capacity. This work pioneered the usage of ultralight reduced graphene fiber (rGF) fabrics as conductive scaffolds, aiming to reduce the weight of non-active components and enhance the practical capacity. Ultrathin SnS nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries (SIBs).
View Article and Find Full Text PDFLattice oxygen activity plays a dominant role in balancing discharge capacity and performance decay of lithium-rich layered oxide cathodes (LLOs). On the basis of density functional theory (DFT) and tight-binding theory, the activity of lattice oxygen can be improved by tensile strain and suppressed by compressive strain. To verify this conclusion, LLOs with large lattice parameters (L-LLOs) were synthesized taking advantage of the lattice expansion effect in nanomaterials.
View Article and Find Full Text PDF