As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones.
View Article and Find Full Text PDFGiven the miR-33's mechanistic relationships with multiple etiological factors in the pathogenesis of atherosclerosis (AS), we investigated the therapeutic potentials of dual-targeted microbubbles (HA-PANBs) in foam cell-specific release of anti-miR-33 (ANM33) oligonucleotides, resulting in the early prevention of AS progression and severity. The intracellular localization, loading optimization, and therapeutic effects of HA-PANBs were examined in detail in a co-cultured cell model of phagocytosis. Compared with non-targeting nanobubbles (NBs) and single-targeted microbubbles as controls, HA-PANBs efficiently delivered the ANM33 specifically to foam cells via sustained release, exhibiting its clinical value in mediating RNA silencing.
View Article and Find Full Text PDFAim: To investigate the pattern of left ventricular (LV) function and myocardial perfusion and their relationship in dilated cardiomyopathy (DCM) patients using layer-specific speckle tracking imaging (STI) and layer-specific myocardial contrast echocardiography (MCE).
Material And Methods: Thirty DCM patients and 30 controls were recruited and underwent STI and MCE examination. The peak values of longitudinal strain (LS), circumferential strain (CS) of each layer of LV were recorded and compared between groups.
Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs.
View Article and Find Full Text PDFObjective: To prepare a new type of dual-target microbubble loaded with anti-miR-33 (ANM33).
Methods: Carrier core nanobubbles (NBs) were prepared by thin film hydration, and microbubbles loaded with PM1 (PCNBs) were prepared by grafting DSPE-PEG2000-maleimide-PM1 onto the NB surface. ANM33 was connected via electrostatic adsorption and covalent bonding, and hyaluronic acid (HA) was covalently connected.
Ovarian survival after transplantation is key to determining the success and efficacy of ovarian tissue cryopreservation and transplantation (OTCP). However, non-invasive monitoring of ovarian survival in the early stages of ovarian transplantation remains a great challenge. Anti-Müllerian hormone (AMH) is a survival factor that can promote the growth of follicles and has been recognized as an ovarian tissue-specific marker.
View Article and Find Full Text PDFUltrasound-targeted microbubble destruction (UTMD) has recently drawn considerable attention in biomedicine applications due to its great potential to locally enhance gene delivery. However, conventional microbubbles have a microscale particle size and polydisperse particle size distribution, which makes it difficult for them to directly come into contact with tumor cells and to efficiently deliver therapeutic genes via ultrasound cavitation effects. In the current study, we developed a kind of novel cationic biosynthetic nanobubble (CBNB) as an ultrasonic gene delivery carrier through coating PEI on the surface of these biosynthetic nanobubbles (BNBs).
View Article and Find Full Text PDF