Emulsion gels with specific rheological properties have widespread applications in foods, cosmetics, and biomedicines. However, the constructions of water-in-oil emulsion gels are still challenging, due to the limited interactions available in the continuous oil phase. Here, a versatile strategy is developed to prepare a new type of emulsion gels, called Jammed Pickering emulsion gels (JPEGs).
View Article and Find Full Text PDFThe combination of ferroptosis inducers and immune checkpoint blockade can enhance antitumor effects. However, the efficacy in tumors with low immunogenicity requires further investigation. In this work, a water-in-oil Pickering emulsion gel is developed to deliver (1S, 3R)-RSL-3 (RSL-3), a ferroptosis inducer dissolved in iodized oil, and programmed death-1 (PD-1) antibody, the most commonly used immune checkpoint inhibitor dissolved in water, with optimal characteristics (RSL-3 + PD-1@gel).
View Article and Find Full Text PDFProperties of emulsions highly depend on the interdroplet interactions and, thus, engineering interdroplet interactions at molecular scale are essential to achieve desired emulsion systems. Here, attractive Pickering emulsion gels (APEGs) are designed and prepared by bridging neighboring particle-stabilized droplets via telechelic polymers. In the APEGs, each telechelic molecule with two amino end groups can simultaneously bind to two carboxyl functionalized nanoparticles in two neighboring droplets, forming a bridged network.
View Article and Find Full Text PDFThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2021
Complex coacervation enables important wet adhesion processes in natural and artificial systems. However, existed synthetic coacervate adhesives show limited wet adhesion properties, non-thermoresponsiveness, and inferior biodegradability, greatly hampering their translations. Herein, by harnessing supramolecular assembly and rational protein design, we present a temperature-sensitive wet bioadhesive fabricated through recombinant protein and surfactant.
View Article and Find Full Text PDFMost tumors have more severe hypoxia levels than normal tissue; tumor hypoxia is thus a useful target for cancer treatment. Here, we develop an effective oxygen delivery vehicle of polydopamine-nanoparticle-stabilized oxygen microcapsules by interfacial polymerization. The oxygen microcapsules have excellent biocompatibility.
View Article and Find Full Text PDFLiving organisms in nature have amazing control over their color, shape, and morphology in response to environmental stimuli for camouflage, communication, or reproduction. Inspired by the camouflage of the octopus via the elongation or contraction of its pigment cells, oblate cholesteric liquid crystal droplets are dispersed in a polymer matrix, serving as the role of pigment cells and showing structural color due to selective Bragg reflection by their periodic helical structure. The color of 3D-printed biomimetic systems can be tuned by changing the helical pitch via the chiral dopant concentration or temperature.
View Article and Find Full Text PDFNanoparticles with diverse structures and unique properties have attracted increasing attention for their widespread applications. Co-precipitation under rapid mixing is an effective method to obtained biocompatible nanoparticles and diverse particle carriers are achieved by controlled phase separation via interfacial tensions. In this Minireview, we summarize the underlying mechanism of co-precipitation and show that rapid mixing is important to ensure co-precipitation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
Hydrogels enable a variety of applications due to their dynamic networks, structural flexibility, and tailorable functionality. However, their mechanical performances are limited, specifically in the context of cellular mechanobiology. It is also difficult to fabricate robust gel networks with a long-term durability.
View Article and Find Full Text PDFCo-precipitation is generally refers to the co-precipitation of two solids and is widely used to prepare active-loaded nanoparticles. Here, it is demonstrated that liquid and solid can precipitate simultaneously to produce hierarchical core-shell nanocapsules that encapsulate an oil core in a polymer shell. During the co-precipitation process, the polymer preferentially deposits at the oil/water interface, wetting both the oil and water phases; the behavior is determined by the spreading coefficients and driven by the energy minimization.
View Article and Find Full Text PDFMussel-inspired chemistry, owing to its unique and versatile functions to manipulate dynamic molecular-scale interactions, has emerged as a powerful tool for the rational design and synthesis of new hydrogels. In particular, possessing a myriad of unique advantages that are otherwise impossible by conventional counterparts, mussel-inspired hydrogels have been widely explored in numerous fields such as biomedical engineering, soft electronics and actuators, and wearable sensors. Despite great excitement and vigor, a comprehensive and timely review on this emerging topic is missing.
View Article and Find Full Text PDFMolecular-surfactant-stabilized emulsions are susceptible to coalescence and Ostwald ripening. Amphiphilic particles, which have a much stronger anchoring strength at the interface, could effectively alleviate these problems to form stable Pickering emulsions. Herein, we describe a versatile method to fabricate biocompatible amphiphilic dimer particles through controlled coprecipitation and phase separation.
View Article and Find Full Text PDFMetal/covalent-organic framework (MOF/COF) membranes have attracted increasing research interest and have been considered as state-of-the-art platforms applied in various environment- and energy-related separation/transportation processes. To break the trade-off between permeability and selectivity to achieve ultimate separation, recent studies have been oriented towards how to design and exploit ultrathin MOF/COF membranes (i.e.
View Article and Find Full Text PDFDeposition of dopamine and tannic acid has received great attention in the fields of surface and interface science and technology. The deposition behaviors of various metal-phenolic systems have been investigated, and it is generally accepted that at least one catechol group is essential to the formation of the coatings. Herein, we report a novel and effective surface-coating system based on the coordination complexes of Fe ions with a natural product juglone that contains only one phenolic hydroxyl.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
Surface modification has been well recognized as a promising strategy to design and exploit diversified functional materials. However, conventional modification strategies usually suffer from complicated manufacture procedures and lack of universality. Herein, a facile, robust, and versatile approach is proposed to achieve the surface functionalization using dopamine and acrylate monomers via a one-step polymerization and codeposition process.
View Article and Find Full Text PDF