Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue.
View Article and Find Full Text PDFMagnetic covalent organic frameworks (FeO@TPPCl) were synthesized via a one-pot process in which magnetic nanoparticles (FeO@MNP) served as a magnetic core and 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde (TP) and 2,2',5,5'-tetrachlorobenzidine (PCl) as two building blocks to form a shell. The as-prepared FeO@TPPCl nanoparticles have superior features, including large surface area (186.5 m g), high porosity, strong magnetic responsiveness (42.
View Article and Find Full Text PDFFast and highly efficient digestion of proteins is essential for high-throughput proteomic analysis. Herein, a facile approach was developed for self-assembly preparation of trypsin-immobilized capillary monolithic column and its application as an immobilized enzyme microreactor (IMER) for fast and highly efficient proteolysis was described. The performance of the trypsin-immobilized monolithic enzyme microreactor was evaluated by in-situ digestion of model proteins.
View Article and Find Full Text PDFSulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.
View Article and Find Full Text PDFPolydopamine nanospheres (PDA) were designed to serve as a new substrate for surface-enhanced desorption/ionization mass spectrometry (SELDI-MS). Compared with conventional organic matrices, the PDA substrate showed superior LDI performance for analyzing a wide variety of environmental pollutants, including polycyclic aromatic hydrocarbons, bisphenols, benzophenones, sulfonamides, perfluorinated compounds and estrogens. Benzoapyrene was used to evaluate the ability of quantitative analysis and its corresponding limit of detection (LOD) of as low as 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become an indispensable tool for high-throughput analysis of macromolecules, but many challenges still remain in detection of small molecules due to the severe matrix-related background interference in the low-molecular-weight ranges (MW < 700 Da). Herein, a gallic acid (GA)-functionalized zirconium 1,4-dicarboxybenzene metal-organic framework (MOF) (denoted as UiO-66-GA) was designed to serve as a new substrate, and a novel strategy on the basis of the synergistic effect of MOF and GA was developed to enhance the LDI process. In comparison with conventional organic matrices, the UiO-66-GA substrate showed superior LDI performance in the analysis of a wide variety of molecules including amino acids, unsaturated fatty acids, bisphenols (BPs), oligosaccharides, peptides, protein, and polyethylene glycol (PEG) of various average molecular weights from 200 to 10000.
View Article and Find Full Text PDFAn efficient one-pot two-step indole-to-carbazole strategy has been developed. This transition metal-free methodology uses oxygen as the sole oxidant and starts from cheap and readily available indoles, ketones, and alkenes. The present protocol efficiently enables the assembly of a diverse array of substituted carbazole products with good regioselectivity and broad tolerance of functional groups.
View Article and Find Full Text PDF