Laser-based light detection and ranging (LIDAR) offers a powerful tool to real-timely map spatial information with exceptional accuracy and owns various applications ranging from industrial manufacturing, and remote sensing, to airborne and in-vehicle missions. Over the past two decades, the rapid advancements of optical frequency combs have ushered in a new era for LIDAR, promoting measurement precision to quantum noise limited level. For comb LIDAR systems, to further improve the comprehensive performances and reconcile inherent conflicts between speed, accuracy, and ambiguity range, innovative demodulation strategies become crucial.
View Article and Find Full Text PDFAuxiliary laser heating has become a widely adopted method for Kerr soliton frequency comb generation in optical microcavities, thanks to its reliable and easy-to-achieve merits for solving the thermal instability during the formation of dissipative Kerr solitons. Here, we conduct optimization of auxiliary laser heating by leveraging the distinct loss and absorption characteristics of different longitudinal and polarization cavity modes. We show that even if the auxiliary and pump lasers enter orthogonal polarization modes, their mutual photothermal balance can be efficient enough to maintain a cavity thermal equilibrium as the pump laser enters the red-detuning soliton regime, and by choosing the most suitable resonance for the auxiliary and pump lasers, the auxiliary laser power can be reduced to 20% of the pump laser and still be capable of warranting soliton generation.
View Article and Find Full Text PDFFiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably.
View Article and Find Full Text PDFIn this Letter, we report an investigation of the feasibility and performance of wavelength-division multiplexed (WDM) optical communications using an integrated perfect soliton crystal as the multi-channel laser source. First, we confirm that perfect soliton crystals pumped directly by a distributed-feedback (DFB) laser self-injection locked to the host microcavity has sufficiently low frequency and amplitude noise to encode advanced data formats. Second, perfect soliton crystals are exploited to boost the power level of each microcomb line, so that it can be directly used for data modulation, excluding preamplification.
View Article and Find Full Text PDFSolitons in microresonators have spurred intriguing nonlinear optical physics and photonic applications. Here, by combining Kerr and Brillouin nonlinearities in an over-modal microcavity, we demonstrate spatial multiplexing of soliton microcombs under a single external laser pumping operation. This demonstration offers an ideal scheme to realize highly coherent dual-comb sources in a compact, low-cost and energy-efficient manner, with uniquely low beating noise.
View Article and Find Full Text PDFThe developing advances of microresonator-based Kerr cavity solitons have enabled versatile applications ranging from communication, signal processing to high-precision measurements. Resonator dispersion is the key factor determining the Kerr comb dynamics. Near the zero group-velocity-dispersion (GVD) regime, low-noise and broadband microcomb sources are achievable, which is crucial to the application of the Kerr soliton.
View Article and Find Full Text PDFAs an exceptional nonlinear material, graphene offers versatile appealing properties, such as electro-optic tunability and high electromagnetic field confinement in the terahertz regime, spurring advance in ultrashort pulse formation, photodetectors and plasmonic emission. However, limited by atomic thickness, weak light-matter interaction still limits the development of integrated optical devices based on graphene. Here, an exquisitely designed meta-cavities combined with patterned graphene is used to overcome this challenge and promote THz-graphene interaction via terahertz location oscillation.
View Article and Find Full Text PDFOptical solitons in mode-locked laser cavities with dispersion-nonlinearity interaction, delivers pulses of light that retain their shape. Due to the nature of discretely distributed dispersion and nonlinearity, optical solitons can emit Kelly-sidebands via the frequency coupling of soliton and dispersive waves. In this paper, we generate a high-energy femtosecond laser comb, by using the intracavity Kelly radiations and 3 order nonlinearities.
View Article and Find Full Text PDFOptical-microcavity-enhanced light-matter interaction offers a powerful tool to develop fast and precise sensing techniques, spurring applications in the detection of biochemical targets ranging from cells, nanoparticles, and large molecules. However, the intrinsic inertness of such pristine microresonators limits their spread in new fields such as gas detection. Here, a functionalized microlaser sensor is realized by depositing graphene in an erbium-doped over-modal microsphere.
View Article and Find Full Text PDFIn recent years, terahertz waves have attracted significant attention for their promising applications. Due to a broadband optical response, an ultra-fast relaxation time, a high nonlinear coefficient of graphene, and the flexible and controllable physical characteristics of its meta-structure, graphene metamaterial has been widely explored in interdisciplinary frontier research, especially in the technologically important terahertz (THz) frequency range. Here, graphene's linear and nonlinear properties and typical applications of graphene metamaterial are reviewed.
View Article and Find Full Text PDFSurface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-the-art optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics.
View Article and Find Full Text PDFSurface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene's plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG).
View Article and Find Full Text PDFSoliton frequency combs generate equally-distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The generation of solitons in microresonators can further improve the compactness of comb sources. However the geometry and the material's inertness of pristine microresonators limit their potential in applications such as gas molecule detection.
View Article and Find Full Text PDFResearch (Wash D C)
March 2021
The combination of optical fiber with graphene has greatly expanded the application regimes of fiber optics, from dynamic optical control and ultrafast pulse generation to high precision sensing. However, limited by fabrication, previous graphene-fiber samples are typically limited in the micrometer to centimeter scale, which cannot take the inherent advantage of optical fibers-long-distance optical transmission. Here, we demonstrate kilometers long graphene-coated optical fiber (GCF) based on industrial graphene nanosheets and coating technique.
View Article and Find Full Text PDFDetection of individual molecules is the ultimate goal of any chemical sensor. In the case of gas detection, such resolution has been achieved in advanced nanoscale electronic solid-state sensors, but it has not been possible so far in integrated photonic devices, where the weak light-molecule interaction is typically hidden by noise. Here, we demonstrate a scheme to generate ultrasensitive down-conversion four-wave-mixing (FWM) in a graphene bipolar-junction-transistor heterogeneous D-shaped fiber.
View Article and Find Full Text PDFGraphene and the following derivative 2D materials have been demonstrated to exhibit rich distinct optoelectronic properties, such as broadband optical response, strong and tunable light-mater interactions, and fast relaxations in the flexible nanoscale. Combining with optical platforms like fibers, waveguides, grating, and resonators, these materials has spurred a variety of active and passive applications recently. Herein, the optical and electrical properties of graphene, transition metal dichalcogenides, black phosphorus, MXene, and their derivative van der Waals heterostructures are comprehensively reviewed, followed by the design and fabrication of these 2D material-based optical structures in implementation.
View Article and Find Full Text PDFPhotonic sensors that are able to detect and track biochemical molecules offer powerful tools for information acquisition in applications ranging from environmental analysis to medical diagnosis. The ultimate aim of biochemical sensing is to achieve both quantitative sensitivity and selectivity. As atomically thick films with remarkable optoelectronic tunability, graphene and its derived materials have shown unique potential as a chemically tunable platform for sensing, thus enabling significant performance enhancement, versatile functionalization and flexible device integration.
View Article and Find Full Text PDFOptical frequency combs, which emit pulses of light at discrete, equally spaced frequencies, are cornerstones of modern-day frequency metrology, precision spectroscopy, astronomical observations, ultrafast optics and quantum information. Chip-scale frequency combs, based on the Kerr and Raman nonlinearities in monolithic microresonators with ultrahigh quality factors, have recently led to progress in optical clockwork and observations of temporal cavity solitons. But the chromatic dispersion within a laser cavity, which determines the comb formation, is usually difficult to tune with an electric field, whether in microcavities or fibre cavities.
View Article and Find Full Text PDFGraphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years.
View Article and Find Full Text PDFChemical sensing is one of the most important applications of nanoscience, whose ultimate aim is to seek higher sensitivity. In recent years, graphene with intriguing quantum properties has spurred dramatic advances ranging from materials science to optoelectronics and mechanics, showing its potential to realize individual molecule solid-state sensors. However, for optical sensing the single atom thickness of graphene greatly limits the light-graphene interactions, bottlenecking their performances.
View Article and Find Full Text PDFA graphene coated microfiber Bragg grating (GMFBG) for gas sensing is reported in this Letter. Taking advantage of the surface field enhancement and gas absorption of a GMFBG, we demonstrate an ultrasensitive approach to detect the concentration of chemical gas. The obtained sensitivities are 0.
View Article and Find Full Text PDFThe complex refractive index (CRI) of graphene waveguide (GW) is of great importance for modeling and developing graphene-based photonic or optoelectronic devices. In this paper, the CRI of the GW is investigated theoretically and experimentally, it is found that the CRI of the GW will modulate the intensity and phase of transmitting light. The phase alterations are obtained spectrally by a Microfiber-based Mach-Zehnder interferometer (MMZI), experimental results demonstrate that the CRIs of the GW vary from 2.
View Article and Find Full Text PDF