The mass spectrometry based multi-attribute method (MAM) has gained popularity in the field of biopharmaceutical analysis as it promises a single method for comprehensive monitoring of multiple product quality attributes (PQAs) and product purity. Sample preparation for protein digestion and peptide separation are critical considerations for a reduced peptide mapping-based MAM. To avoid desalting steps required in most tryptic protein digestion and in order to improve peptide separation for hydrophilic peptides, we developed an improved robust sample preparation using lysyl endopeptidase (Lys-C) for high-throughput MAM testing.
View Article and Find Full Text PDFMultiple reaction monitoring (MRM) is a liquid chromatography-mass spectrometry (LC-MS) based quantification platform with high sensitivity, specificity, and throughput. It is extensively used across the pharmaceutical industry for the quantitative analysis of therapeutic molecules. The potential of MRM analysis for the quantification of specific host cell proteins (HCPs) in bioprocess, however, has yet to be well established.
View Article and Find Full Text PDFTherapeutic drugs and environmental pollutants may exhibit high reactivity toward DNA bases and backbone. Understanding the mechanisms of drug-DNA binding is crucial for predicting their potential genotoxicity. We developed a fluorescence analytical method for the determination of the preferential binding mode for drug-DNA interactions.
View Article and Find Full Text PDF