Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood.
View Article and Find Full Text PDFIn maize, two pyruvate orthophosphate dikinase (PPDK) regulatory proteins, ZmPDRP1 and ZmPDRP2, are respectively specific to the chloroplast of mesophyll cells (MCs) and bundle sheath cells (BSCs). Functionally, ZmPDRP1/2 catalyse both phosphorylation/inactivation and dephosphorylation/activation of ZmPPDK, which is implicated as a major rate-limiting enzyme in C4 photosynthesis of maize. Our study here showed that maize plants lacking ZmPDRP1 or silencing of ZmPDRP1/2 confer resistance to a prevalent potyvirus sugarcane mosaic virus (SCMV).
View Article and Find Full Text PDFThe development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, 'Fengdan' and 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome.
View Article and Find Full Text PDFLeaves are the primary photosynthetic organs, providing essential substances for tree growth. It is important to obtain an anatomical understanding and regulatory network analysis of leaf development. Here, we studied leaf development in Populus Nanlin895 along a development gradient from the newly emerged leaf from the shoot apex to the sixth leaf (L1 to L6) using anatomical observations and RNA-seq analysis.
View Article and Find Full Text PDFOsTST1 affects yield and development and mediates sugar transportation of plants from source to sink in rice, which influences the accumulation of intermediate metabolites from tricarboxylic acid cycle indirectly. Tonoplast sugar transporters (TSTs) are essential for vacuolar sugar accumulation in plants. Carbohydrate transport across tonoplasts maintains the metabolic balance in plant cells, and carbohydrate distribution is crucial to plant growth and productivity.
View Article and Find Full Text PDFCellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood.
View Article and Find Full Text PDFMosaic symptoms are commonly observed in virus-infected plants. However, the underlying mechanism by which viruses cause mosaic symptoms as well as the key regulator(s) involved in this process remain unclear. Here, we investigate maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV).
View Article and Find Full Text PDFAs sessile organisms, plants need to respond to rapid changes in numerous environmental factors, mainly diurnal changes of light, temperature, and humidity. Maize is the world's most grown crop, and as a C4 plant it exhibits high photosynthesis capacity, reaching the highest rate of net photosynthesis at midday; that is, there is no "midday depression." Revealing the physiological responses to diurnal changes and underlying mechanisms will be of great significance for guiding maize improvement efforts.
View Article and Find Full Text PDFAnn Transl Med
August 2022
Background: Intracranial atherosclerotic stenosis (ICAS) is one of the leading causes of stroke worldwide. Current diagnostic evaluations and treatments remain insufficient to assess the vulnerability of intracranial plaques and reduce the recurrence of stroke in symptomatic ICAS. On the other hand, asymptomatic ICAS is associated with an increased risk of cognitive impairment.
View Article and Find Full Text PDFOsAPL positively controls the seedling growth and grain size in rice by targeting the plasma membrane H-ATPase-encoding gene, OsRHA1, as well as drastically affects genes encoding H-coupled secondary active transporters. Nutrient transport is a key component of both plant growth and environmental adaptation. Photosynthates and nutrients produced in the source organs (e.
View Article and Find Full Text PDFPdeHCA2 regulates the transition from primary to secondary growth, plant architecture, and affects photosynthesis by targeting PdeBRC1 and controlling the anatomy of the mesophyll, and intercellular space, respectively. Branching, secondary growth, and photosynthesis are vital developmental processes of woody plants that determine plant architecture and timber yield. However, the mechanisms underlying these processes are unknown.
View Article and Find Full Text PDFBasilar artery occlusion (BAO) is one of the most devastating types of ischaemic stroke and is identified by using computed tomography (CT) angiography. Marfan syndrome is an autosomal dominant disorder involving multisystem connective tissue, and the neurological complications are relatively rare. In this article, we report a case of a young Marfan syndrome patient complicated with BAO ischaemic stroke.
View Article and Find Full Text PDFThe cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant () of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
August 2020
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.
View Article and Find Full Text PDFAS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively.
View Article and Find Full Text PDFLysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2019
The ubiquitin system is crucial for the development and fitness of higher plants. De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2019
Drought significantly affects plant growth and has devastating effects on crop production, NAC transcription factors respond to abiotic stresses by activating gene expression. In this study, a maize NAC transcription factor, ZmNAC33, was cloned and characterized its function in Arabidopsis. Transient transformation in Arabidopsis leaves mesophyll protoplasts and trans-activation assays in yeast showed that ZmNAC33 was localized in the nucleus and had transactivation activity.
View Article and Find Full Text PDFBackground: Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees.
View Article and Find Full Text PDFEthanoligenens, a novel ethanologenic hydrogen-producing genus, is a representative fermenter in its unique acetate-ethanol fermentation and physiology. Acetic acid accumulation is one of major factors that affect H-ethanol co-production. However, sufficient information is unavailable on the tolerance mechanisms of hydrogen-producing bacterium in acetic acid stress.
View Article and Find Full Text PDFClin Neurol Neurosurg
October 2018
The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation.
View Article and Find Full Text PDFIn C photosynthesis, pyruvate orthophosphate dikinase (PPDK) catalyzes the regeneration of phosphoenolpyruvate in the carbon shuttle pathway. Although the biochemical function of PPDK in maize is well characterized, a genetic analysis of PPDK has not been reported. In this study, we use the maize transposable elements Mutator and Ds to generate multiple mutant alleles of PPDK.
View Article and Find Full Text PDFThe identification of N -glycosylated proteins with information about changes in the level of N -glycosylation during de-etiolation provides a database that will aid further research on plant N -glycosylation and de-etiolation. N-glycosylation is one of the most prominent and abundant protein post-translational modifications in all eukaryotes and in plants it plays important roles in development, stress tolerance and immune responses. Because light-induced de-etiolation is one of the most dramatic developmental processes known in plants, seedlings undergoing de-etiolation are an excellent model for investigating dynamic proteomic profiles.
View Article and Find Full Text PDF