The study utilized a simple and cost-effective approach to improve the photoelectrochemical (PEC) water-splitting performance of various materials, including reduced graphene oxide (rGO), tin oxide nanostructures (SnO), and rGO/SnO composites. The composites examined were rS15, containing 15 mg of rGO and 45 mg of SnO, and rS5, with 5 mg of rGO and 50 mg of SnO, tested in a sodium hydroxide (NaOH) electrolyte. Notably, the rS5 electrode showed a significant increase in PEC efficiency in 0.
View Article and Find Full Text PDFAntibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity.
View Article and Find Full Text PDFNovel g-CN functionalized yttrium-doped ZrO hybrid heterostructured (g-YZr) nanoparticles have been synthesized to investigate photocatalytic Cr(VI) reduction as well as electrochemical energy storage applications. The nanoparticles have been characterized to examine their structural, optical, and photocatalytic properties. XRD confirmed the incorporation of dopant ions and heterostructure development between g-CN and doped ZrO.
View Article and Find Full Text PDFPure ZrO, graphitic carbon nitride, Cu-doped ZrO nanoparticles (Cu-Zr), and doped Cu-Zr nanoparticles decorated on the g-CN surface (g-CuZr nanohybrids) were successfully prepared by a hydrothermal technique. Synthesized catalysts were examined by XRD, FE-SEM, TEM, UV-Vis spectroscopy, photoluminescence (PL), and BET surface measurements, respectively. The photocatalytic reduction of Cr(VI) photoreduction as well as energy storage supercapacitor applications were thoroughly investigated.
View Article and Find Full Text PDF