Publications by authors named "Bahraminasab M"

Background: Despite the development of various therapeutic approaches over the past decades, the treatment of glioblastoma multiforme (GBM) remains a major challenge. The extracellular adenosine-generating enzyme, CD73, is involved in the pathogenesis and progression of GBM, and targeting CD73 may represent a novel approach to treat this cancer. In this study, three-dimensional culture systems based on three hydrogel compositions were characterized and an optimal type was selected to simulate the GBM microenvironment.

View Article and Find Full Text PDF

KTiOPO (KTP) nanoparticles (NPs) are potential materials as biolabels for long-term imaging. Optimizing their properties can lead to higher imaging efficiency and lower cytotoxicity and side effects. In this study, these nanoparticles were synthesized using the co-precipitation method and capping agents of oxalic acid and glycine.

View Article and Find Full Text PDF

In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min.

View Article and Find Full Text PDF

The optimal design of complex engineering systems requires tracing precise mathematical modeling of the system's behavior as a function of a set of design variables to achieve the desired design. Despite the success of current tibial components of knee implants, the limited lifespan remains the main concern of these complex systems. The mismatch between the properties of engineered biomaterials and those of biological materials leads to inadequate bonding with bone and the stress-shielding effect.

View Article and Find Full Text PDF

Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats.

View Article and Find Full Text PDF

Objectives: The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces.

Methods: Ca-P/BSA coatings were prepared on the surfaces of 75vol.

View Article and Find Full Text PDF

Tissue-engineered bone substitutes, characterized by favorable physicochemical, mechanical, and biological properties, present a promising alternative for addressing bone defects. In this study, we employed an innovative 3D host-guest scaffold model, where the host component served as a mechanical support, while the guest component facilitated osteogenic effects. More specifically, we fabricated a triangular porous polycaprolactone framework (host) using advanced 3D printing techniques, and subsequently filled the framework's pores with tragacanth gum-45S5 bioactive glass as the guest component.

View Article and Find Full Text PDF

Purpose: The present study aimed to assess the effects of extremely low-frequency electromagnetic fields (ELF-MF) on structural changes of human osteosarcoma cells by analyzing the stained cytoskeleton for assessing the relationship between the fractal dimension parameter and proliferation rate of radiation-induced cells.

Materials And Methods: In this study, 2-mT magnetic fields with various waveforms, including sinusoidal, triangular, and pulsed shapes, were employed to determine the biological effects of ELF-EMF on the human osteosarcoma MG-63 cell line. All experiments were performed in two modes: continuous exposure at 3 h and fractionated irradiations at 3 consecutive days.

View Article and Find Full Text PDF

Polycaprolactone scaffolds were designed and 3D-printed with different pore shapes (cube and triangle) and sizes (500 and 700 μm) and modified with alkaline hydrolysis of different ratios (1, 3, and 5 M). In total, 16 designs were evaluated for their physical, mechanical, and biological properties. The present study mainly focused on the pore size, porosity, pore shapes, surface modification, biomineralization, mechanical properties, and biological characteristics that might influence bone ingrowth in 3D-printed biodegradable scaffolds.

View Article and Find Full Text PDF

Background: Three-dimensional (3D) printing is a capable approach for the fabrication of bone tissue scaffolds. Nevertheless, a purely made scaffold such as polylactic acid (PLA) may suffer from shortcomings and be restricted due to its biological behavior. Gelatin, hydroxyapatite and platelet-rich plasma (PRP) have been revealed to be of potential to enhance the osteogenic effect.

View Article and Find Full Text PDF

In this study, hydroxyapatite (HA) scaffolds were synthesized and characterized, following the osteogenic and angiogenic effects of HA scaffolds with or without endometrial mesenchymal stem stromal cells (hEnSCs) derived Exosomes were investigated in rat animal model with calvaria defect. The X-ray diffraction (XRD) analysis of HA powder formation was confirmed with Joint Corporation of Powder Diffraction Standards (JCPDS) files numbers of 34-0010 and 24-0033A and Ball mill, and sintering manufactured Nano-size particles. Obtained results containing FE-SEM images presented that the surface of scaffolds has a rough and porous structure, which makes them ideal and appropriate for tissue engineering.

View Article and Find Full Text PDF

In this paper, the in-vivo healing of critical-sized bony defects by cell-free and stem cell-seeded 3D-printed PLA scaffolds was studied in rat calvaria bone. The scaffolds were implanted in the provided defect sites and histological analysis was conducted after 8 and 12 weeks. The results showed that both cell-free and stem cell-seeded scaffolds exhibited superb healing compared with the empty defect controls, and new bone and connective tissues were formed in the healing site after 8 and 12 weeks, postoperatively.

View Article and Find Full Text PDF

Alumina-titanium (AlO-Ti) composites with enhanced mechanical and corrosion properties have been recently developed for potential applications in orthopaedics and hard tissue replacements. However, before any clinical use, their interactions with biological environment must be examined. The aim of this study, therefore, was to assess the biocompatibility of three AlO-Ti composites having 25, 50, and 75 volume percentages of titanium.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy utilizes low-power lasers to modulate the viability of living human cells and leads to changes in proliferation, differentiation, adhesion and gene expression, even though the rearrangement of cytoskeleton was not previously studied. The present study aims to evaluate the photobiological effects on the elastic behavior of human osteosarcoma cells (MG-63) and their morphological changes. Fluorescence staining, confocal imaging and atomic force microscopy (AFM) topography were performed to study the effects of PBM therapy with the exposure of 532 nm-25mW, 650 nm-3mW, 650 nm-150mW and 780 nm-70mW beams following the 5-min continuous irradiation.

View Article and Find Full Text PDF

Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering.

View Article and Find Full Text PDF

Recent studies suggest that Spirulina may have great therapeutic benefits due to its antioxidant and anti-inflammatory properties. The primary objective of this study was to evaluate the chemopreventive properties of the Spirulina microalgae (Spi) on the regression and survival of tumor, histopathological features of glioblastoma, and detection of the molecular mechanism of Spi. Tumor viability versus Spi was determined using the MTT assay.

View Article and Find Full Text PDF

Background: The margin of crown is a significant area for plaque accumulations. Therefore, the ability of the cement to seal the margin is very important. The aim of the present study was to evaluate the bond (retentive) strength, microleakage, and failure mode of four different types of cements in stainless steel crown (SSC) of primary molar teeth.

View Article and Find Full Text PDF

Porous Lattice Structure (PLS) scaffolds have shown potential applications in the biomedical domain. These implants' structural designs can attain compatibility mechanobiologically, thereby avoiding challenges related to the stress shielding effect. Different unit cell structures have been explored with limited work on the fabrication and characterization of titanium-based PLS with cubic unit cell structures.

View Article and Find Full Text PDF

Background: Alumina-titanium (AlO-Ti) biocomposites have been recently developed with improved mechanical properties for use in heavily loaded orthopedic sites. Their biological performance, however, has not been investigated yet.

Methods: The aim of the present study was to evaluate the in vivo biological interaction of AlO-Ti.

View Article and Find Full Text PDF

Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing.

View Article and Find Full Text PDF

Seeding cells directly into a new medium subjects the cells to stress due to certain differences in medium formulation. As a result, it seems necessary for cells to be adapted to a new medium, in order to save the properties of the cells and to achieve reliable results from the tests. The MC3T3 osteoblastic cell line is recommended to be cultured in Alpha Minimum Essential Medium (α-MEM).

View Article and Find Full Text PDF

Nano-hydroxyapatite powder was used in electric discharge machining to modify the surface of Ti-6Al-4V medical alloy. Herein, electric discharge machining was performed, with and without powder-mixed flushing for evaluation of the material erosion rate and surface roughness. In addition to dielectric type, several process parameters including current, pulse-on duration, pulse-off duration, and electrode hole diameter were considered.

View Article and Find Full Text PDF

Alumina-titanium composites have shown good mechanical properties which makes them promising for orthopedic applications. The placement of an orthopedic implant involves an invasive procedure which stimulates a localized inflammatory response causing an acidic environment around the implant. This makes the study on corrosion more critical.

View Article and Find Full Text PDF

Biomaterials are continuously being developed to overcome the drawbacks of existing materials and provide improved function in artificial organs. Currently Co-Cr based alloys are used in many medical applications such as hip and knee implants which still require modification to better perform. In this article, therefore, the influence of tungsten allying element on electrochemical corrosion resistance and biocompatibility behaviour of a recently developed Co-30Cr-4Mo-1Ni alloy composition were investigated.

View Article and Find Full Text PDF

The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses.

View Article and Find Full Text PDF