Publications by authors named "Bahman Khahani"

Article Synopsis
  • Plant growth relies on both internal and external signals that regulate cell division, elongation, and wall thickening, with mechanical forces playing a crucial role in this process.
  • The study focuses on a bZIP transcription factor called SWIZ, which is involved in grass plants’ response to mechanical touch, leading to changes like reduced stem height and increased diameter.
  • Activation of touch-responsive genes was observed in roots after mechanostimulation, highlighting the unique role of SWIZ in regulating gene expression and providing new insights into how grasses perceive and respond to mechanical stimuli.
View Article and Find Full Text PDF

Plants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging.

View Article and Find Full Text PDF

Many plant species monitor and respond to changes in day length (photoperiod) for aligning reproduction with a favourable season. Day length is measured in leaves and, when appropriate, leads to the production of floral stimuli called florigens that are transmitted to the shoot apical meristem to initiate inflorescence development. Rice possesses two florigens encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1).

View Article and Find Full Text PDF

A genome-wide association study (GWAS) was used to identify associated loci with early vigor under simulated water deficit and grain yield under field drought in a diverse collection of Iranian bread wheat landraces. In addition, a meta-quantitative trait loci (MQTL) analysis was used to further expand our approach by retrieving already published quantitative trait loci (QTL) from recombinant inbred lines, double haploids, back-crosses, and F2 mapping populations. In the current study, around 16%, 14%, and 16% of SNPs were in significant linkage disequilibrium (LD) in the A, B, and D genomes, respectively, and varied between 5.

View Article and Find Full Text PDF
Article Synopsis
  • Common bean (Phaseolus vulgaris) is vital for food security in developing countries but faces economic losses due to various diseases, highlighting the need for effective disease resistance strategies.* -
  • This study performed a meta-QTL analysis using data from 152 QTLs across 44 populations, identifying nine stable QTL regions, with significant reductions in confidence intervals to improve trait mapping.* -
  • Specific QTLs linked to disease resistance were found for various ailments like halo blight, white mold, and anthracnose, suggesting shared genetic loci for resistance, and comparative genomics helped identify potential functional genes across related species.*
View Article and Find Full Text PDF

Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019.

View Article and Find Full Text PDF

Unlabelled: (CMV), (TuMV) and (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively.

View Article and Find Full Text PDF

In rice, the florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1), OsFD-like basic leucine zipper (bZIP) transcription factors, and Gf14 proteins assemble into florigen activation/repressor complexes (FACs/FRCs), which regulate transition to flowering in leaves and apical meristem. Only OsFD1 has been described as part of complexes promoting flowering at the meristem, and little is known about the role of other bZIP transcription factors, the combinatorial complexity of FAC formation, and their DNA-binding properties. Here, we used mutant analysis, protein-protein interaction assays and DNA affinity purification (DAP) sequencing coupled to in silico prediction of binding syntaxes to study several bZIP proteins that assemble into FACs or FRCs.

View Article and Find Full Text PDF

Background: Improving yield and yield-related traits is the crucial goal in breeding programmes of cereals. Meta-QTL (MQTL) analysis discovers the most stable QTLs regardless of populations genetic background and field trial conditions and effectively narrows down the confidence interval (CI) for identification of candidate genes (CG) and markers development.

Results: A comprehensive MQTL analysis was implemented on 1052 QTLs reported for yield (YLD), grain weight (GW), heading date (HD), plant height (PH) and tiller number (TN) in 122 rice populations evaluated under normal condition from 1996 to 2019.

View Article and Find Full Text PDF